Fail-Secure Access Control

Petar Tsankov
Institute of Information

Srdjan Marinovic
Institute of Information

Security, Security,
ETH Zurich ETH Zurich
ptsankov@inf.ethz.ch srdanm@inf.ethz.ch
ABSTRACT

Decentralized and distributed access control systems are sub-
ject to communication and component failures. These can
affect access decisions in surprising and unintended ways,
resulting in insecure systems. Existing analysis frameworks
however ignore the influence of failure handling in deci-
sion making. Thus, it is currently all but impossible to
derive security guarantees for systems that may fail. To
address this, we present (1) a model in which the attacker
can explicitly induce failures, (2) failure-handling idioms,
and (3) a method and an associated tool for verifying fail-
security requirements, which describe how access control
systems should handle failures. To illustrate these contri-
butions, we analyze the consequences of failure handling in
the XACML 3 standard and other domains, revealing secu-
rity flaws.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection; D.4.6 [Operating Sys-
tems]|: Security and Protection—access controls

General Terms

Security, Verification

Keywords

Access Control; Failure Handling; Formal Analysis

1. INTRODUCTION

Modern access control systems are often decentralized and
distributed, and therefore subject to communication and
component failures. If failures affect the availability of in-
formation needed for security decisions, then access control
systems must, either implicitly or explicitly, handle these
failures. This concern permeates all access control domains.
For example, firewalls must operate even when their log en-
gines crash [26] or rule updates fail [28], web applications
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’14, November 3-7, 2014, Scottsdale, Arizona, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660307 .

Mohammad Torabi Dashti David Basin
Institute of Information Institute of Information
Security, Security,
ETH Zurich ETH Zurich
torabidm@inf.ethz.ch basin@inf.ethz.ch

must service requests even if authentication services are un-
responsive [27], delegation systems must evaluate requests
even when they cannot update their revocation lists, and
perimeter security systems must control access even when
the wireless channels to their central database are jammed.
In such settings, the access decisions of a Policy Decision
Point (PDP) cannot be understood without considering the
PDP’s failure handlers as well.

The access control community has not thus far rigorously
studied the effects of failure handlers on access decisions.
One reason for this is that simply interpreting failures as
denies appears sufficient to conservatively approximate the
PDP’s desired behavior. This would suggest that the pol-
icy writer need not overly concern himself with analyzing
the PDP’s failure handlers. However, failures can affect the
PDP’s decisions in surprising and unintended ways. Such
simplistic approximations are not only inflexible, they also
do not necessarily result in secure systems. As an example,
we describe later how the conservative approach of replac-
ing failures with denies had been originally adopted in the
XACML 3 standard, and was later dropped due to its inse-
curity.

Given that failure handling influences the PDP’s access
decisions, it follows that formal analysis frameworks for ac-
cess control should account for the PDP’s failure handlers.
Only then can security guarantees be derived for the PDP’s
access decisions, both in the presence and absence of failures.
Analysis techniques for obtaining such security guarantees
would be of immediate practical value because existing ac-
cess control systems separate failure handling from the “nor-
mal” (typically declarative) policy interpreted by the PDP,
i.e. the policy that defines the PDP’s decisions when no fail-
ures occur. The logic that decides access requests is there-
fore split into two parts. This separation makes the PDP’s
behavior difficult to understand and analyze.

Existing formal analysis frameworks for access control poli-
cies are inadequate for the task at hand. This is neither an
issue with the expressiveness of their formal languages nor
the complexity of their decision problems. Rather, they lack
(1) a system and attacker model tailored for failure scenar-
ios, (2) idioms for specifying failure handlers, and (3) meth-
ods for verifying fail-security requirements, i.e. security re-
quirements that describe how distributed access control sys-
tems ought to handle failures. Thus, currently it is all but
impossible to derive security guarantees that extend beyond
the PDP’s normal behaviors. In this paper, we show how to
realize these three artifacts using the BelLog analysis frame-
work [32].

Contributions. This is the first paper that systematically
analyzes the role of failure handling in access control sys-
tems. We investigate three kinds of security flaws: failure-
oblivious policy composition, overly eager failure handling,
and the preemptive masking of failures. Examples of sys-
tems that exhibit these flaws are given in the following sec-
tions; a common thread in these systems is their seeming
conformance to security common sense.

We also demonstrate how the PDP, including its failure
handlers, can be modeled and analyzed using the BelLog
policy analysis framework. In particular: (1) We investigate
seven real-world access control systems and use these to ex-
tract a system and an attacker model tailored for analyzing
the effect of failures on the PDP’s decisions. (2) We derive
common failure-handling idioms from these systems, which
can be readily encoded in BelLog. (3) Through examples,
we show how to express fail-security requirements and we
provide a tool to automatically verify them for a given PDP
with respect to our attacker model. We argue that our veri-
fication method is effective by demonstrating how the three
kinds of security flaws mentioned above can be discovered.

As a final remark, we choose BelLog for technical conve-
nience. BelLog is a four-valued extension of Datalog (the
core of most decentralized access control languages), where
one of the truth values, borrowed from Belnap’s logic, can be
used to denote failures; see §4 for details. Our contributions
are however independent of the BelL.og formalism. Any suf-
ficiently expressive logic, for example first-order logic, can
replace BelL.og for our purpose.

Related Work. Although fail-security requirements have
been discussed in the security literature [7,33], there has
been no rigorous, systematic treatment of fail-secure access
control. The existing access control specification languages,
such as [3,9,13,16,18,25], do not explicitly deal with failure
handlers in their analysis. Although failures are considered
in [12], failure-handling mechanisms are not dealt with.

Static and dynamic policy analysis frameworks such as [2,
10,14,15,17,23] can potentially be tailored to reason about
PDPs with failure handling, similarly to BelLog. In partic-
ular, PBel’s analysis framework [10] also supports policies
with many-valued policy decisions and can, if delegations
are excluded, express our failure-handling idioms. We re-
mark that dynamic analysis frameworks, such as [2,14,17],
consider history-based access decisions, which fall outside
the scope of our paper.

Organization. In §2, we give examples of PDP failure han-
dlers and fail-security requirements for access control sys-
tems. In §3, we define our system and attacker model. In §4,
we summarize the BelLog specification language and use it
to specify the examples from §2. In §5, we analyze these ex-
amples with respect to their fail-security requirements. We
point to future research directions in §6.

2. MOTIVATION

As motivation, we use the XACML 3 standard to show
that approximating failures with denials, although seem-
ingly conservative, can lead to insecure systems. Through
our second and third examples, taken from the web applica-
tion and grid computing domains, we illustrate the common
PDP implementation pattern that treats failure handlers as
a separate add-on to the normal policy engine. We show how

evaluate (Request req)
Set decisions
for (pol in policies)

try
decision = pol.evaluate(req)
if (pol.issuer == admin) or authorize(pol, req)

decisions.add(decision)
catch (EvaluationException e)
skip
return compositionOperator.apply(decisions)

Figure 1. PDP module for evaluating XACML 3 policy
sets. The methods pol.evaluate(req) and authorize(pol, req)
throw an exception if the PDP fails to execute them.

this separation makes understanding and analyzing PDPs
particularly difficult, resulting in systems open to attacks.

XACML 3. XACML 3 is an OASIS standard for spec-
ifying access control policies [36]. XACML 3 policies are
issued by principals and evaluated by a PDP. A policy is-
sued by the PDP’s administrator is called trusted; other-
wise, it is non-trusted. The administrator specifies whether
a non-trusted policy is authorized to decide a given request.
XACML 3 policies are grouped into policy sets and their
decisions are combined with composition operators, such as
permit-overrides, which grants access if at least one policy
grants access. To decide a given request, the PDP first com-
putes the decisions of all policies in the set. Afterwards, it
checks which non-trusted policies are authorized by the ad-
ministrator. Finally, the PDP combines the decisions of the
trusted policies and the authorized non-trusted policies us-
ing the policy set’s composition operator.

An XACML 3 PDP obtains all information needed for
policy evaluations, such as attributes and credentials, from
Policy Information Points (PIPs). The XACML standard,
up to Revision 16, stated that the PDP should refrain from
using policies that could not be evaluated or authorized due
to communication and PIP failures. This decision follows
the intuitive idea that all suspicious policies should be ex-
cluded from the PDP’s decision. Figure 1 specifies such
a PDP, including its failure handler, in pseudo-code. Al-
though this failure handler is inflexible, the committee did
not anticipate other consequences on the PDP’s decisions
apart from always making them more conservative (less per-
missive). This however turned out to be wrong.

When the proposed failure-handling behavior was consid-
ered together with the deny-overrides composition opera-
tor, the following attack was discovered [37]. Consider a
request 7 and a policy set P that contains one trusted pol-
icy Pi that grants r and one authorized non-trusted pol-
icy P> that denies r. P’s decisions are combined with deny-
overrides. If the PDP successfully evaluates P, and fails to
evaluate P, then the PDP will grant r, even though it does
not have all the necessary information to make this decision.
In this case, the attacker can simply launch denial-of-service
attacks against PIPs and obtain a grant decision for r. In §5
we show how this attack can be found through automated
analysis.

This example illustrates that a PDP’s failure handlers,
regardless of their simplicity, can affect access decisions in
surprising ways. In this example, the failure-oblivious com-
position of sub-policies is the root of the security flaw. To
remedy this flaw, the XACML 3 standard currently uses

isAuthorized(User u, Object o, List aclIDs)
try
for (id in aclIDs)
if (readAcl(id).grants(u,o0)) return true
catch (ReadAclException e)
return def.grants(u,o) and logger.on()
return false

Figure 2. A PDP module for the web app example.

> C:Q & Subject has access
< arol ;
2’/\ &> Subject does not have access

Q7 Bob Dz/ --» The PDP failed to check that
Owner > ‘2 ave the delegation is not revoked
v —> 4o

Ann Fred —» Non-revoked delegation

Figure 3. The figure shows which subjects in the depicted
scenario have access according to FR2. Ann has access be-
cause her delegation is issued by the owner. Bob and Dave
have access because they have non-revoked chains. Fred
and Carol are denied access because they do not have non-
revoked chains and they are not the owner’s direct delegates.

and overloads a designated policy decision (the indetermi-
nate IN) for every policy that cannot be evaluated due to
failures. Consequently, failure handling is now a concern of
the policy writer.

Authorizations in Web Apps. Web applications use ac-
cess control frameworks to specify and manage user per-
missions. Examples include the Java Authentication and
Authorization Service JAAS, Apache Shiro, and Spring Se-
curity. Basic policies can be specified using declarative pol-
icy languages. A PDP module loads policy specifications
and evaluates them within its authorization method. A re-
occurring problem is that the PDP module fails to load a
declarative specification due to syntactic errors or missing
files. To deal with this problem, administrators often main-
tain a default specification that serves as a fallback option.
Use of the default specification is typically conditioned on
whether logging is enabled. This fallback approach imposes
the following fail-security requirement:

Fail-security requirement 1 (FR1): When the PDP mod-
ule cannot compute an access decision due to malformed or
missing policy specifications, then it uses the default specifi-
cation if logging is enabled, and it denies access otherwise.

To illustrate this, consider the case where the PDP module
composes finitely many access control lists (ACLs) using the
permit-overrides operator, which permits access if at least
one of the ACLs permits access, and denies access otherwise.
To adhere to FR1, the PDP module must invoke the failure
handler if and only if none of the ACLs permits access and
at least one of them is malformed. The failure handler in
this example would evaluate the default ACL def and check
whether logging is enabled. Figure 2 gives a straightforward
authorization method for this scenario in pseudo-code. The
method takes as input a user object u, the requested ob-
ject o, and a list ac1IDs of ACL identifiers. The method
readAcl(id) returns the ACL object corresponding to id,

pol(X) :- owner(X)
pol(X) :- pol(Y), grant(Y,X)

(a) Access control policy del.policy (in Datalog).

isAuthorized(Subject s, List delegations)
datalogEngine.load(del.policy)
for ((delegator, delegatee) in delegations)
try
if (rev.query(delegator, delegatee) == false)
datalogEngine.assert(grant (delegator, delegatee))
catch (QueryException e)
if isOwner(delegator)
datalogEngine.assert(grant (delegator, delegatee))
return datalogEngine.check(pol(s))

(b) PDP module, where datalogEngine represents a Datalog in-
terpreter. The method rev.query() may throw an exception.

Figure 4. A PDP module for the grid example.

and throws a ReadAclException exception when it cannot
find or parse the associated ACL. The default ACL def is
hard-coded in the method.

The pseudo-code describes a correct permit-overrides op-
erator for ACLs under normal conditions, i.e. when there are
no failures. The catch block is also correct as it intuitively
follows the structure of FR1. However, the failure handling
is overly eager in that if a ReadAclException is thrown while
evaluating an input ACL then the PDP stops evaluating the
remaining input ACLs and jumps to the catch block. This
method therefore does not satisfy FRI: if a list of two ACL
identifiers is passed to the method and the first ACL fails
to load, then the method immediately consults def, which
would be wrong if the second ACL would permit access.

This problem is rooted in the overly eager invocation of
the failure handler. The problem here is not an instance of
syntactic vulnerability patterns, such as overly-broad throws
declaration and overly-broad catch block [20], and it cannot
be solved for example by simply moving the try-catch con-
struct inside the for loop. One solution would be to delay
the invocation of the failure handler until all the ACLs have
been evaluated.

To conclude, because existing web access control frame-
works typically separate failure handling from the normal
policy of the PDP, it is difficult to gain confidence in their
security. To rise to this challenge, policy specification lan-
guages and their analysis frameworks should also account
for the interactions that result from the separation. In §4
we give a formal specification of the method of Figure 2, and
we verify the specification against FR1 in §5, which reveals
the discussed problem.

Authorizations in Grids. In grid computing platforms,
resources (such as storage space) are located in different
domains. Each domain has an owner, and only one PDP
controls access to the domain’s resources. It is however
infeasible for each PDP to manage authorizations for all
subjects from all domains. Domain owners therefore del-
egate authorization management to trusted subjects, pos-
sibly from other domains. These subjects may then issue
tokens to authorize other subjects and to further delegate
their rights. All tokens are stored as digital credentials. Sub-
jects then submit their credentials, alongside their access re-
quests, to a PDP. In addition, it is sometimes necessary to
revoke subject’s credentials, for example when dealing with

Credentials
Requests (R) and PEP

&,—i Credentials (C) w

’

Grant/Deny access

PEP

¥

Subjects

Adversary)
N
/ = PIP
R, C i e
, PDP| - Remote queries)
_ Grant/Deny ve Information .
]
=

Figure 5. System model for decentralized and distributed access control systems.

ex-employees. A common solution is to store all revoked
credentials on a central revocation server.

A (delegation) chain for a subject S is a transitive delega-
tion from the domain owner to S. We say that a delegation
chain is non-revoked if none of the delegations in the chain
has been revoked. A given domain’s PDP grants access if the
subject has at least one non-revoked delegation chain or the
subject is the domain’s owner. The revocation server may
sometimes be unavailable, for example due to lost network
connectivity. Denying all access in the case of failures may
be too restrictive as the unavailability of some resources, to
selected subjects, would be too costly [33]. One fail-security
requirement that reflects this notion is:

Fail-security requirement 2 (FR2): When the PDP cannot
check whether a subject has at least one non-revoked dele-
gation chain due to failures, the PDP grants access if the
subject is a direct delegate of the owner; otherwise it denies
access.

The rationale is that the owner rarely revokes his di-
rect delegates. This requirement also states that the owner
chooses to ignore all delegations issued by subjects, includ-
ing his direct delegates, whose delegation chains cannot be
checked. Figure 3 illustrates one delegation scenario and
shows which subjects are granted access according to FR2.

Existing delegation languages do not specify failure han-
dling within policy specifications, but rely on having fail-
ure handlers within the PDP. This approach, which sepa-
rates the delegation logic from failure handling, is described
in [8]. Based on these guidelines, Figure 4 depicts a pos-
sible PDP design for our grid access control scenario. In
Figure 4a, we specify the normal policy of the PDP in Dat-
alog, the core of many delegation access control languages
(see e.g. [3,13,16,25]). The policy grants access to a sub-
ject X if X is an owner or has a (transitive) delegation chain
from an owner. Before evaluating the Datalog policy, the
PDP checks whether each supplied delegation is still valid
by querying the revocation server. If it is revoked then the
PDP discards the delegation.

Considered separately, the Datalog normal policy and the
failure handler of Figure 4 intuitively conform to FR2. Their
interaction however leads to a subtle attack. The attack,
described in §5, results from the preemptive masking of fail-
ures. We were unable to find the attack before specifying
this PDP in BelLog; we believe this applies to most policy
writers.

Finally, we remark that our goal in this paper is not to
promote particular fail-security requirements; they can be
determined for example from a risk analysis of each deployed

system. Our goal is instead to raise and address the need
for analyzing access control systems in the presence of (ma-
licious) failures with respect to their security requirements.
We stress that even systems that are intended to conform to
simple conservative requirements, such as the fail-safe prin-
ciple (deny all access if there is any failure) [29], are not
exempt from failure-handling flaws, and thus should also be
analyzed.

3. SYSTEM AND ADVERSARIAL MODEL

We consider distributed access control systems where a
policy decision point (PDP) communicates with multiple
policy enforcement points (PEP), and multiple policy in-
formation points (PIP); see Figure 5. A subject submits
requests and credentials to a PEP, which forwards them to
the PDP. A credential maps a subject or a resource to an
attribute (such as a role). Credentials are issued by, and
exchanged between, subjects; they can also be stored lo-
cally at the PDP. We assume that the PDP verifies their
authenticity, for example using digital signatures. The PDP
sends remote queries to PIPs to obtain information rele-
vant for making access decisions, for example information
concerning revoked subjects and the current time. Remote
queries can be implemented through inter-process communi-
cation mechanisms such as files, network sockets, and shared
memory. The PDP software, either implicitly or explicitly,
recognizes and handles communication failures.

The PDP interprets a normal access control policy, which
maps access requests, credentials, and information to access
decisions; the normal policy does not specify failure han-
dling. The policy is defined by policy rules, which are issued
by the subjects and given to the PDP for evaluation. The
PDP has one designated subject, the administrator, who has
the authority over all access requests and his policy rules are
always evaluated. The PDP takes other rules into account
only if the administrator has delegated to their issuers, ei-
ther directly or transitively, authority over the given request.
All access decisions made by the PDP are forwarded to, and
enforced by, the PEPs.

In our model, we assume that the PDP and the PEPs
do not fail, whereas PIPs can fail. We also assume that the
communication channels between the PDP and the PIPs can
fail, while all other channels (e.g. PEP-to-PDP) are reliable.
We assume that communication delays are bounded and fail-
ures are determined either by timeouts or by receiving cor-
rupted messages. After the PDP sends a remote query ¢ to
a PIP, it therefore receives one of two responses: (1) the an-
swer to ¢; or (2) error, indicating a communication failure.

Table 1. Analyzed access control systems and their failure-
handling idioms.

System Failure-handling Idioms
Cisco 108 [11] Catch

KABA KES-2200 [21] Catch

Kerberos [22] Fallback

RedHat Firewall [28] Catch

Spring Framework [30] Propagate, Catch
WebSphere [35] Catch

XACML PDPs [38] Propagate, Catch

Note that in our model, PIP failures are indistinguishable
from communication failures.

An adversary is a subject who can cause any remote query
to fail. The adversary cannot however forge credentials or
forge and replay past remote queries and obsolete responses.
To this end, we assume that all communication channels
are authentic and have freshness guarantees (through times-
tamps, nonces, etc.). Note that our adversary model sub-
sumes all failures due to benign causes. The adversary can
in particular cause complete channel failure by causing all
remote queries through that channel to fail. We remark that
query confidentiality and information flow concerns [4] are
outside of this paper’s scope.

In addition to the examples given in §2, this system model
encompasses many other real-world access control settings,

such as authorization systems for electronic health records [5].

4. SPECIFYING ACCESS CONTROL WITH
FAILURE HANDLING

In this section, we first describe three failure-handling id-
ioms, derived by analyzing seven existing access control sys-
tems and their failure handlers. These idioms are abstrac-
tions we use for modeling failure-handling mechanisms. We
then give an overview of the specification language BelLog,
and show how it can be used to specify the failure-handling
idioms and the PDPs of §2, including their failure handlers.

4.1 Failure-handling Idioms

To understand how existing systems handle communica-
tion failures, we have inspected the documentation of seven
access control systems; see Table 1. Our analysis revealed
three failure-handling idioms, which are sufficient to describe
how failures are handled in these systems. To describe the
idioms, we abstract a PDP as evaluating a request through
a finite sequence of computation and communication steps;
hereafter referred to as events. We assume that computation
events always terminate successfully, while communication
events either terminate successfully or fail. Note that simi-
lar abstractions exist for exception handling in programming
languages [19, 24].

Fallback. The fallback idiom abstracts the failure handlers
that use fallback information sources when the communica-
tion channels to the primary information sources fail. If a
communication event fails then it is re-executed using the
fallback source. The fallback source can be, for example, a
backup of a primary information source. This idiom is used
in access control systems whose primary authentication ser-
vices are unreliable. For example, Kerberos [22] can fall

back on local user/password lists when its primary LDAP
authentication service is unavailable.

To instantiate this idiom, a fallback source must be con-
figured for each information source that may fail. Although
the fallback source may be periodically synchronized with
the information source, it may nevertheless provide stale in-
formation of inferior quality.

Catch. This idiom abstracts the failure handlers that catch
failures and then enforce alternative access control policies.
The catch idiom is analogous to exception handling in pro-
gramming languages where the failure to execute a given
procedure is handled by a designated procedure. In terms
of the PDP’s execution, whenever an event fails, the execu-
tion branches to another (alternative) sequence of events.

We can use this idiom to implement a system that meets
FR2. The system’s alternative access control policy would
contain only the grants for the owners’ direct delegates. Sys-
tems that employ this idiom include: KABA KES-2200 [21],
which is a token-based physical access control system that
upon power failures is configured to either grant or deny
all requests; IBM WebSphere [35], whose exception han-
dlers evaluate designated error-override policies; and Cisco
IOS [11] and RedHat Firewall [28], which in case of failures
use alternative rule sets.

Propagate. Both the fallback and the catch idioms handle
failed events immediately upon failure. In contrast, FRI re-
quires failures to be handled after all the ACLs have been
evaluated. The propagate idiom abstracts the mechanisms
for meeting requirements with such “delayed” failure han-
dling. Whenever an event fails, the PDP pushes a desig-
nated error value as the input to all subsequent events.
For example, to meet FRI, ideally an error value that
indicates a failure to evaluate an ACL is propagated. The
default ACL is evaluated iff no ACL grants a given request
and the PDP failed to evaluate at least one ACL. Note
that the failure handler of Figure 2 implementing FR1 is,
however, an instance of the catch idiom. Systems that em-
ploy the propagate idiom include XACML PDPs [38], which
propagate indeterminate policy decisions, and Spring-based
applications [30], which propagate data access exceptions.

4.2 BelLog Language

We use the BelLog language to specify the PDP’s behav-
ior including its failure handlers. We favor BelLog because
(1) we can use its truth value L to explicitly denote failures,
(2) we can syntactically extend its core language to define
common failure handlers, and (3) it can encode state-of-the-
art decentralized policy languages [3,13,25]. We give a brief
introduction to BelLog in the following; see [32] for further
details.

BelLog is an extension of stratified Datalog [1], where the
truth values come from Belnap’s four-valued logic [6]. Bel-
Log’s syntax is given in Figure 6a. We use 7, [, and 7 to
denote finitely many rules, literals, and terms separated by
commas. A BellLog program is a finite set of rules. Each
rule has a head consisting of an atom and a body consisting
of a list of literals. An atom is a predicate symbol together
with a list of constants and variables. A literal is a, —a, or
~a, where a is an atom, and — and ~ are the truth- and
knowledge-negation operators; see Figure 6b. We write con-
stants with sans font, and predicate symbols with italic font.

(program) P =T (rule) re=a<+1
(literal) l:=a|-al|~a (atom) a::=p(t
(term) tu=c|wv
(predicates) pe P DD (variables) v eV
(constants) ce€C
(a) Syntax.
t
VAN
<| L T
AN ¢ /

(b) BelLog’s truth space D = {f, L, T,t}. A and V denote the
meet and join over (D, <X). = is the knowledge partial order.

(domain) Y CC (X is finite)
PY = P’s grounding over
(ground atoms) A={p(t) |t}
(interpretations) I,I' e T= A~ D
IC T iff Va€ A. I(a) X I'(a)
(consequence Tp=Z—T
operator) Tp(I)a=\/{I(]) | (a < 1) € P}
Mo = HI, Ml = pr]\li,lTPi [} Mi—l
Ifp; Tp={z efpTp | I C x}
[P] = Mx

(strata models)

(model)

(¢) Semantics. M and LI denote the meet and join over (Z,C). P’s

rules are partitioned into strata Pi,--- , Pn.

Figure 6. BelLog’s syntax and semantics.

We use the capital letters P, R, and S to denote BelLog pro-
grams, and the remaining capital letters for variables.

BelLog’s truth space is the lattice (D, <X, A, V); see Fig-
ure 6b. The non-classical truth values 1 and T denote unde-
fined and conflict. In §4.3, we show how L is used to denote
information missing due to failures. BelLog’s semantics is
given in Figure 6¢c. Given a finite set of constants ¥, called
the domain, P* denotes the program obtained by replacing
all variables in P in all possible ways using ¥, and A is the
set of ground atoms constructed from ¥ without variables.
P’s model is an element of the lattice (Z,C, M,), where 7
is the set of all interpretations. An interpretation I € Z
maps ground atoms to truth values. The symbols — and ~
are overloaded over interpretations in the standard way, and
I(l1, -+ ,1n) = I{l1) A--- A I(ly). A rule a < [assigns the
truth value of I(Z) to a. The consequence operator T'p applies
P’s rules and joins the results with \/ when multiple rules
have the same head. Program P’s model is constructed by
first partitioning P’s rules into strata Pi,--- , P, and then
computing, for each stratum P;, the join of (1) the previous
stratum’s model M;_; and (2) the meet of all fixed points
of Tp, (fp Tp,) that are greater than or equal to M;—;. A
partitioning Pi,---, P, is a stratification if for each stra-
tum P;, any predicate symbol that appears in a negative
literal —p(t) does not appear in the head of P, U---U P,.

Finally, the input to a BelLog program P is a set I of rules
of the form p(f) < v, where v € D and p does not appear
in the heads of P’s rules. We write [P]; for [P U I]. For
a given input I, a program P entails the ground atom a,
denoted P by a, iff [P]i(a) =t.

pVgq:=-(=pA-g) p#v:=-(p=v)
p="f:==(pV~p) p=L:=@#HA{@#1)
p=t:=pA~p ApVvT)=1)
pdcerq:=((c=t)Ap) prrg:=qa(p=v)>p
V((e#t)Ag)

Figure 7. Derived BelLog operators. Here p, ¢, and ¢
denote rule bodies, and v € D.

4.3 Specifying PDPs in BelLog

We now explain how a PDP, i.e. its normal policy and its
failure handlers, can be specified in BelLog. We illustrate
this by specifying the examples from §2.

4.3.1 Specification Preliminaries

As described in our system model given in §3, a PDP’s
behavior is determined by three elements: (1) the PDP in-
puts, namely credentials forwarded by a PEP and informa-
tion obtained from PIPs, (2) the (normal) access control
policy evaluated by the PDP, and (3) the failure-handling
procedures used when the communication channels between
the PDP and PIPs fail. In the following, we describe how
these elements can be specified in BelLog.

Inputs. We represent credentials as atoms whose first ar-
gument represents the issuing principal’s identifier. For ex-
ample, public(ann, file) is interpreted as “ann asserts that file
is public”. Hereafter, we write ann:public(file) to emphasize
a credential’s issuer. For brevity, we omit writing “admin:”
to denote admin’s credentials.

We model the information obtained from PIPs as remote
queries, which check whether a specified credential is stored
at a designated PIP. We write remote queries as ann:
public(file)@pip, where ann:public(file) is a credential and
pip is a PIP identifier. Formally, remote queries are rep-
resented as atoms where the PIP identifier is appended to
the predicate symbol; for example, ann: public(file)@Qpip is
represented with the atom public__pip(ann, file).

The PDP’s input consists of credentials forwarded by a
PEP and credentials obtained using remote queries to PIPs.
We model a PDP’s input as BelLog input. Given a BelLog
input I and a credential cred, the truth value I(cred) is: t
if cred is a credential forwarded by the PEP, and f if cred
is not forwarded by the PEP. For a remote query cred@pip,
I(cred@pip) is: tif cred is stored at pip, f if cred is not stored
at pip, and L if a failure prevents the PDP from obtaining
cred from pip.

Access Control Policies. We specify the PDP’s access
control policy using BelL.og rules. Note that state-of-the-art
decentralized access control languages such as SecPAL [3],
RT [25], Binder [13], and DKAL [18], all have translations to
Datalog. Any policy written in these languages can therefore
be encoded in BelLog, since BelLog extends Datalog. Fur-
thermore, algebraic policy languages, such as XACML [38]
and PBel [10], can also be encoded in BelLog; see [32].

Failure Handling. We define failure-handling operators
as syntactic sugar in BelLog. We use a syntactic extension
of BelLog that allows for nesting and combining rule bodies
with the operators —, ~, and A. For example, the rule r +
=(=p A =q), where p and ¢ are rule bodies, assigns to r the

truth value computed by applying the operators = and A to

the truth values computed for p and g. Additional BelLog

operators, such as the if-then-else operator (_<_ > _) and

the v-override operator (_ +»), are defined in Figure 7.
We define the error-override operator as

L
p»qi=p—gq,

where p and g are rule bodies. The construct p » ¢ evaluates
to ¢’s truth value if p’s truth value is 1; otherwise, the
result of p is taken. Using this operator, we can model the
failure-handling idioms given in §4.1. Consider the remote
query cred@pip, which checks whether the credential cred
is stored at pip. To instantiate the fallback idiom, where
fallback is the fallback PIP’s identifier, we write cred@pip »
cred@fallback.

To illustrate the catch idiom’s specification, consider a
PDP with the following two policies.

pol, (X) < empl(X)Qdb
poly(X) + stud(X)

(Policy Pr)
(Policy P»)

Here the atom pol;(X) denotes policy P;’s decision. The
communication between the PDP and the PIP db can fail.
Imagine that the PDP instantiates the catch idiom and uses
P> whenever it cannot evaluate P; due to failures. We can
specify this failure handler as

pol(X) « pol, (X) » pol,(X) .

The propagate idiom is the default failure handler used in
BelLog specifications. That is, we need not explicitly encode
it using BelLog rules. This is because we represent failures
with L, and this truth value is always propagated unless it
is explicitly handled with an operator such as error-override.

4.3.2 Examples
We now specify the PDPs discussed in §2.

XACML 3. We first observe that the failure handling in
Figure 1 is independent of the policies in a policy set and of
the composition operator used to compose their decisions.
Therefore, to illustrate the specification of a complete PDP
(i.e. one that contains both a normal policy and failure han-
dling), we choose deny-overrides as the designated composi-
tion operator for the policies. In BelLog, the deny-overrides
operator corresponds to the infinitary meet /\ over the truth
ordering =<; see Figure 6b. For a detailed, formal description
of A, see [32]. We note that other XACML 3 operators can
also be encoded within the given PDP model.
The following BelLog program models the XACML 3 PDP’s

failure handling with the deny-overrides operator:

Specification 1 (S1):
pol__set(Req
auth(X, Req

auth(X, Req
X:pol(Req

— /\ (X:pol(Req) < auth(X, Req) > t)

—admin(X)
+auth(X, Req)@check » f
+pol(X, Req)@eval » t

—_ = = =

We use Req to denote access requests and X to denote
principals. For brevity, we assume that each principal X
has one policy for all requests, denoted by X:pol(Req). The
outcome of evaluating the policy issued by the principal X is
represented by pol(X, Req)@eval, where eval represents the
PDP’s policy evaluation procedure. To represent whether X

is authorized for a given Req, we write auth(X, Req). There-
fore auth(X, Req)Qcheck is a query to the procedure check
to check whether a non-trusted policy issued by X is autho-
rized to give decisions for the request Req.

To encode that a policy is dropped if a PDP cannot eval-
uate it, we use the (__ » t) pattern. This is because t is
the identity element for the /\ operator. Thus, if there is
an error while evaluating a policy, then t is returned, which
does not influence the final outcome of the composition. It
formalizes that the policy was ignored. If we were modeling
another composition operator, then that operator’s identity
element would be used.

To specify that a policy is dropped if a PDP cannot check
its authorization, we use the (__ » f) pattern. This means
that a policy is treated as unauthorized and thus its decision
is ignored (i.e. mapped to t through the if-then operator).

Finally, the for-loop is implicitly modeled using /A and
the if-then operator. The /\ operator returns the decision
evaluated over the set of policies of all principals. Those
policies that are not authorized are treated as the identity
element and thus do not influence the result.

Authorizations in Web Applications. To model the
web application scenario given in §2, we suppose that there
are n input ACLs and one default ACL. We specify the
authorization method given in Figure 2 as follows.

Specification 2 (S2):
pol(U, O) +(isGranted(U, O)@acly LA

A isGranted(U, O)@Qacly,)
» (isGranted(U, O)Qdef A logging)

We model the ACL i’s evaluation of the access request
(U, O) with the atom isGranted(U, O)Qacl;, where U repre-
sents the user and O the requested object. We model the
logger’s status with the credential logging, and instantiate
the catch idiom using the error-override operator. To specify
the list iterator of Figure 2, we unroll the loop’s n iterations.

We use the f-override operator (»i>) to capture that the PDP
evaluates the ACL i if the ACL ¢ — 1 does not permit the
request. This models the exit from the loop when the deci-
sion is grant. Similarly, the exit from the loop when there
is a failure is captured with the catch idiom using the »
operator. This is because if isGranted(U, O)@acl; evaluates
to L then the entire expression on the left-hand side of » is
evaluated to L as well.

We recall that this specification violates FFR1 because the
PDP does not evaluate all ACLs if it fails to evaluate, for
example, the first ACL. The reason is that the catch block
is invoked prematurely. In §5, we show how our analysis
reveals this security flaw, and how the flaw can be fixed.

Authorizations in Grids. A BelLog specification of the
PDP for the grid scenario (see Figure 4) is as follows.

Specification 3 (S3):
pol(X) + owner(X)
pol(X) + pol(Y) A X:grant(Y)
X:grant(Y) < X:delegate(Y)A
((=X:revoke(Y)Qrev) » owner(X))

The PDP stores a credential owner(X) for each domain
owner X. We represent a delegation from the subject X

to the subject Y with the credential X :delegate(Y). The
credential X :revoke(Y) represents that the subject X has
revoked Y, and the remote query X:revoke(Y)@rev checks
whether the revocation server stores such revocations.

The top two BelLog rules encode the Datalog policy in
Figure 4. The last BelLog rule encodes the check for re-
voked credentials. Note that the for-loop is implicitly en-
coded, since this BelLog rule is evaluated for all principals
and subjects. The rule establishes that X grants Y if X del-
egates to Y and has not revoked this delegation. The failure
handler is invoked for each delegation separately whenever
the revocation check cannot be made. This follows the inner-
loop logic of Figure 4.

To summarize, these examples demonstrate the use of Bel-
Log and its modeling capabilities. We believe that the failure-
handling idioms considered in this paper, as well as other
common authorization idioms, map naturally to BelLog con-
structs. This makes BelLog a suitable language for spec-
ifying PDPs. Of course, there are limitations to BelLog’s
modeling power. Not all procedural constructs map natu-
rally to BelLog’s declarative specifications, for example see
the list iterator of the web app example. A further investi-
gation of BelL.og’s expressiveness is orthogonal to our results
and outside the scope of this paper.

5. ANALYZING ACCESS CONTROL WITH
FAILURE HANDLING

The goal of our analysis is to check a PDP’s access deci-
sions in the presence of failures. In the following, we first
show how one can simulate a PDP using entailment ques-
tions in BelLog. As an example, we use simulation to dis-
cover the previously described security flaw in XACML 3.
Second, we show how given a BelLog PDP specification P,
and a fail-security requirement r, one can formulate the
problem of checking whether P meets r as a containment
problem in BelLog. We use this to determine whether P con-
forms to r for all possible PDP inputs in our attacker model.
As examples, we check whether the PDPs given in §2 meet
their requirements, and we use the analysis framework to
reveal flaws that violate the fail-security requirements FR1
and FR2.

5.1 BelLog Analysis

Entailment. An entailment question asks whether a Bel-
Log program P derives an atom a for a given input /, namely
whether P b7 a. Entailment is in PTIME [32].

Containment. The syntax and semantics of BelLog con-
tainment are given in Figure 8. Informally, given two BelLog
programs P; and P, that specify PDPs, the containment
question ¢ = P; < P, is answered positively if P is not
more permissive than P for all PDP inputs that satisfy the
condition ¢. Note that a PDP has infinitely many possible
inputs.

In the following, we write IF ¢ = P, = P for IF ¢ =
P1 X Py and IF ¢ = P> < P;. To ease writing containment
conditions, we provide syntactic shorthands in Figure 9. We
also omit writing the condition t in containment questions.

Domain containment (see Figure 8c) is decidable because
there are finitely many inputs for a given domain. In fact,
it is CO-NP-COMPLETE [32]. In contrast, containment is in
general undecidable. Nevertheless, the containment prob-

(containment question) q:=c= P1 <X P2
(condition) cu=t|a=v|VX.c|-c|cAc
(truth value) v e D

(variable) X € V

(a) Syntax. Here a is an input atom, and P; and P, are BelLog
PDP specifications.

IlFst

IFsa=v if I(a) =v

IlFs VX. C(X) if VXeX. Ilks C(X)
IH—E —C Zf I U"g C

IlFs c1 Acea ’Lf IlkFs c1 and I ks o

(b) Satisfaction relation between an interpretation I and a con-
tainment condition ¢ for a given domain X.

(domain containment)

Fsc= P 2P, iff VICZ. VX € .
(I ks ¢) = [P1]1(req) = [P2]1(req)
(containment)

|FC:>P1jP2 Zﬁ\V/ECC ‘FEC:>P1jP2

(c) Semantics. The symbol req is the atom, and X is the list of
free variables in a condition c.

Figure 8. Syntax and semantics of BelLog containment.

lem is in CO-NEXP for BelLog programs whose inputs consist
of only unary predicate symbols [32]. Intuitively, the Bel-
Log programs that fall into this fragment can model PDPs
where (1) all credentials provided as input to the PDP are
associated to a single user, a single group, and a single re-
source; and (2) there are finitely many subjects who issue
credentials.

Implementation. We have implemented a BelLog inter-
preter for deciding entailment and an analysis tool for de-
ciding domain containment; both tools can be downloaded
at www.infsec.ethz.ch/research/software/bellog. The
BelLog interpreter translates BelLog entailment problems
into stratified Datalog entailment problems. The domain
containment tool translates domain policy containment prob-
lems into propositional validity problems.

5.2 Simulating PDPs

Given a PDP input and a request, one can use the PDP’s
specification to simulate the PDP and check whether it grants
or denies the request also in the presence of failures. A PDP
can be simulated by posing entailment questions to its Bel-
Log specification S as follows. First, the PDP input is en-
coded as a BelLog input I, and the request is encoded as
a BelLog atom 7, as described in §4.3. Second, to check
whether the PDP grants or denies r, we pose the entailment
question Sy r

To illustrate, we simulate the XACML 3 PDP and de-
scribe how one can find the attack described in §2. The
PDP’s specification is S1, given in §4.3, and we consider
the following scenario. There are two policies, one issued
by Ann and one by Bob. Ann is the PDP’s administrator.
Let req be a request such that Ann’s policy grants req, while
Bob’s policy denies req. Imagine that Bob’s policy is autho-
rized to give decisions for req. The PDP must therefore
deny req because Ann and Bob’s policies are composed us-

a#v = =(a=0)
c1 Ve = —|(—\C1 A —\Cg)
a1 = az = (a1:f/\a2:f)V(a1:J_/\a2:J_)

V(iai =T Aaz=T)V (a1 =tAaz =t)

Figure 9. Shorthands for writing containment conditions.
The symbols a, a1, and a2 denote BelLog atoms; c¢; and c2
denote containment conditions.

ing the deny-overrides operator. The following BelLog input
models this scenario.
I = { admin(ann) < t, pol(ann,req)@eval < t
pol(bob, req)@eval « f, auth(bob, req)@check + t }.

Here the input I describes a no-failure scenario where the
PDP successfully evaluates both policies and successfully
checks that Bob’s policy is authorized.

To simulate how the PDP behaves in the presence of fail-
ures, we may check the PDP’s decision for the input

It = {admin(ann) < t, pol(ann,req)@eval + t
pol(bob, req)@eval « f, auth(bob, req)@check « L}.

The only difference here is that the PDP fails to check
whether Bob’s policy is authorized for req. We observe that
for this scenario we have S1 by, pol_set(req), i.e. the PDP
grants req because the PDP’s failure handler drops Bob’s
policy decision. As the XACML committee discovered, this
behavior is undesirable because an adversary may gain ac-
cess by forcing the PDP to drop authorized policy decisions.

Preliminary experiments show that our simulation method
scales reasonably well. Simulating the XACML 3 PDP sce-
nario with 10, 100, and 1000 policies respectively takes 0.21,
0.41, and 1.81 seconds on a machine with a quad-core i7-4770
CPU and 32GB of RAM.

Note that our simulation method is similar to fault injec-
tion in software testing [31,34]: The system’s behavior is
tested in various failure scenarios. The difference is that we
do not directly execute the PDP’s code and instead work
with its specification.

5.3 Verifying Fail-security Requirements

To verify that a PDP specification S meets a require-
ment r, we formulate a number of containment problems.
Each containment problem is defined using two BelLog spec-
ifications, where one of them is the PDP specification S and
the other one constrains the PDP’s permissiveness, as pre-
scribed by the requirement r. In the following, we formulate
and verify whether the web app and grid PDPs from §2 meet
their fail-security requirements. We also give an example of
a generic fail-security requirement and show that it can be
verified similarly.

Authorizations in Web Applications. Consider the
PDP specification S2 and the fail-security requirement FR1,
which states that when the PDP cannot compute an access
decision due to malformed or missing specifications, then it
uses the default specification if logging is enabled; otherwise,
it denies access.

To determine whether S2 meets FR1, we first write a con-
dition that is satisfied by the inputs for which the PDP
cannot compute an access decision due to failures. Since

the ACLs are composed with the permit-overrides operator,
the PDP grants a request if any of the ACLs grant the re-
quest, and it denies it if all the ACLs deny it; otherwise, the
PDP cannot compute a decision and it must, as prescribed
by FR1, evaluate the default ACL and check the logging
status. We encode the containment condition as

Corror = ﬁ<(isGmnted(U, O)@ach =t V-

V isGranted(U, O)@acl, = t)V
(isGranted(U, O)@acl; = f A - --

A isGranted(U, O)Qacl, = f)) .

We then construct the BelLog specification Rerror:
Rervor = {pol(U,0) <« (isGranted(U, O)Qdef A logging} .

The specification Renor evaluates to grant if the PDP’s de-
fault ACL evaluates to grant and logging is enabled; oth-
erwise it evaluates to deny. Finally, to check whether the
specification S2 meets FR1, we formulate the containment
problem

Cerror = S = Rerror -

Our analysis tool shows that the specification S2 violates
the requirement FR1 for the PDP input

I = { isGranted(ann, file)@acl; + L,
isGranted(ann, file)Qacly + t,
isGranted(ann, file)Qdef «+ f, } .

S2 violates FR1 because it denies the request pol(ann, file)
even though ACL 2 grants this request.

To meet FR1, the PDP must correctly implement the
propagate failure-handling idiom and apply the failure han-
dler only if it fails to evaluate an ACL and all remaining
ACLs deny access. We correct the PDP’s specification as
follows.

Specification 4 (S4):
pol(U, O) e(isGranted(U, O)@acly Vv - - -
V isGranted (U, O)@acln)
> (isGmnted(U, O)Qdef A lagging)

Our tool shows that S4 meets FRI for a PDP with 10
ACLs, for all PDP inputs in a fixed domain of 10 constants.
The verification takes 0.03 seconds. Naturally, the verifica-
tion time increases with the number of ACLs and the domain
size. For example, the verification time for a PDP with 100
ACLs and inputs ranging over domains of size 10, 100, and
1000 is 0.13, 2.09, and 34.42 seconds, respectively.

We give the pseudo-code for the authorization method
that implements S4 in Figure 10. This method delays han-
dling failures until all ACLs have been evaluated. The PDP
correctly implements the propagate idiom, i.e. it consults the
ACL def only if no input ACL grants the request and the
PDP has failed to evaluate at least one of them (recorded
in the error variable).

Authorizations in Grids. Consider the PDP specifica-
tion S3 and the fail-security requirement FR2, which states
that when the PDP cannot check whether a subject has at

isAuthorized(User u, Object o, List aclIDs)
error = false
for (id in aclIDs)
try
if (readAcl(id).grants(u,0)) return true
catch (NotFoundException e)
error = true
if error
return def.grants(u,o) and logger.on()
return false

Figure 10. A PDP module that meets FRI.

least one non-revoked delegation chain due to failures, the
PDP grants access if the subject is a direct delegate of the
owner; otherwise it denies access.

To verify that the specification meets the requirement,
we formulate two containment problems. The first problem
checks whether the PDP correctly evaluates the requests
made by direct delegates and the second one checks whether
the PDP correctly evaluates the requests made by non-direct
delegates. We formulate these containment problems as the
BelLog program

Rechain = { chain(X) < owner(X)
chain(X) <chain(Y) A Y:delegate(X)
A =Y:revoke(X)@Qrev 1.

Given a subject X, chain(X) is: (1) t if the PDP checks
that X has at least one non-revoked chain, (2) L if the PDP
fails to check whether X has at least one non-revoked chain,
and (3) f if X has no chains or the PDP checks that X has
only revoked chains. We use the containment condition

cdirect = (Y. owner(Y) =t A Yidelegate(X) =t A
Y:revoke(X)@Qrev # t) ,

which is satisfied by a PDP input iff the subject X who
makes the request is a direct delegate and the owner has
either not revoked the delegation or the PDP cannot check
if the delegation is revoked.

We formulate the first containment problem as

Cdirect = S = Rirect s where
Riirect = Rehain U {pOl(X) — chain(X) > t} .

The condition cgirect restricts PDP inputs to direct delegates

and Ruirect specifies which direct delegates S must grant and

deny access to. Since the PDP must grant access to a di-

rect delegate X iff the PDP either checks, or fails to check,

that X has at least one non-revoked chain, Rgirect conflates

L and t into the grant decision using the (_ » t) pattern.
We formulate the second problem as

(_‘Cdirect) = S = Ruon—direct , where
Rion—direct = Rehain U {pol(X) + chain(X) » f} .

The condition —cgirect Testricts PDP inputs to non-direct del-
egates and revoked direct delegates, and Rnon—direct Specifies
which ones S must grant and deny access to. Since the PDP
must deny access to a non-direct delegate X iff the PDP
fails to check that X has at least one non-revoked chain or
X has only revoked chains, Rnon—direct conflates | and f into
the deny decision using the (_ » f) pattern.

Our analysis tool shows that the PDP specification S3
does not meet FR2 because the problem

(_‘Cdirect) =8 = Rnonfdirect

is answered negatively. The tool outputs the following PDP
input:

I = { owner(piet) + t; piet:delegate(ann) « t;

piet:revoke(ann)@rev + L; ann:delegate(fred) « t;

ann:revoke(fred)@rev < f } .

In this scenario, Piet is the owner, and he delegates access
to Ann, who further delegates access to Fred. Furthermore,
the PDP fails to check whether Piet’s delegation to Ann
is revoked, and it succeeds in checking that Ann has not
revoked Fred; see Figure 3. The PDP must deny access
to Fred because he does not have a non-revoked delegation
chain and he is not a direct delegate. The PDP, however,
grants access to Fred, thus violating FR2. This flaw stems
from the preemptive masking of failures. The adversary Fred
can exploit this flaw and force an unintended grant decision
by preventing the PDP from checking whether the owner’s
delegation to Ann is revoked. To confirm the attack, we
simulated the attack scenario using our BelLog interpreter;
for details see Appendix A.
To meet FR2, we modify the specification as follows.

Specification 5 (S5):
pol(X) +grant(X) » (owner(Y) A Y:delegate(X)A
(ﬂY:revoke(X)@rev))

grant(X) +owner(X)
grant(X) <grant(Y') A Y:delegate(X) A (=Y :revoke(X)Qrev)

In the original specification 53, errors are not propagated
through delegation chains. In contrast, the specification S5
propagates errors through delegation chains and thus denies
access to subjects who are not direct delegates and do not
have a non-revoked chain. The pseudo-code that reflects S5
would have to, in effect, distinguish between permissions
solely due to direct delegation versus permissions due to
non-revoked chains.

Our analysis tool shows that the specification S5 meets FR2
for all PDP inputs in a fixed policy domain with eight con-
stants; the verification takes 149.38 seconds. Our tool did
not terminate in a reasonable time for larger domains.

We remark that domain containment gives weaker secu-
rity guarantees than (general) policy containment because
the guarantees are only for the given policy domain. Hence,
domain policy containment does not account for possible
attacks in other domains. For example, domain policy con-
tainment misses the attack described in our grid example
if the policy domain has only two constants (e.g., two sub-
jects). This is because the adversary must assume the role
of a subject who is delegated access by a direct delegate, and
such a subject does not exist in a domain with fewer than
three constants.

Generic Requirements. In addition to the aforemen-
tioned requirements, one can verify whether a PDP meets
certain generic security requirements. For example, one may
want to ensure that a PDP handles all failures, i.e. it always
evaluates requests to either grant or deny decisions. We refer

to this requirement as error-freeness, and show how it can
be checked by formulating suitable containment problems.

Let S be the PDP specification and pol(X) be the atom
used to denote the PDP’s access decisions. We construct
a specification R as follows. Let R = (. We rename the
predicate symbol pol to tmp in S’s rules and add the changed
rules to R. Finally, we add the rule

pol(X) < tmp(X) » f,

to R. We formulate the containment problem as S = R. By
construction, R denies all requests that S evaluates to L.
Therefore, if S evaluates a request to L, then R is not equal
to S; otherwise, S is error-free. Note that one can simi-
larly verify that any atom other than pol(-) in the PDP’s
specification is error-free.

To conclude, these examples show that our simulation
and verification methods can reveal security flaws in PDPs
that handle failures incorrectly. Our preliminary experi-
ments show that our simulation tool scales well to realistic
problems. The runtimes for our analysis tool, however, are
mixed. In our grid example the analysis tool does not termi-
nate in a reasonable amount of time for a domain with nine
constants, whereas in the web app example the tool termi-
nates in less than a minute for domains with thousands of
constants.

6. SUMMARY AND FUTURE WORK

We have initiated the study of how failure handlers af-
fect access decisions made by a PDP, and we have provided
methods and tools to analyze their effects. We have given
examples from standards and existing systems that back our
arguments.

We are currently working on employing our analysis frame-
work in physical access control systems used in industry.
Addressing BelLog’s usability is a major challenge in this
context. As future work, we also plan to improve the scala-
bility of our analysis tool, and extend our system model to
multiple communicating PDPs, where PDPs themselves can
fail.

7. ACKNOWLEDGMENTS

This work was supported in part by the Zurich Infor-
mation Security and Privacy Center. We thank Andreas
Héaberli and Paul Studerus from KABA AG for their feed-
back on our system model, and Sasa Radomirovic for his
comments on the paper.

8. REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases. Addison-Wesley, 1995.

[2] Moritz Y. Becker. Specification and analysis of
dynamic authorisation policies. In Proceedings of the
22nd IEEE Computer Security Foundations
Symposium, pages 203-217, 2009.

[3] Moritz Y. Becker, Cédric Fournet, and Andrew D.
Gordon. SecPAL: Design and Semantics of a
Decentralized Authorization Language. Journal of
Computer Security, pages 619-665, 2010.

[4] Moritz Y. Becker, Alessandra Russo, and Nik Sultana.
Foundations of Logic-Based Trust Management. In
Proceedings of the Symposium on Security and
Privacy, pages 161-175, 2012.

[5] Moritz Y. Becker and Peter Sewell. Cassandra:
Flexible Trust Management, Applied to Electronic
Health Records. In Proceedings of the 17th Workshop
on Computer Security Foundations, pages 139154,
2004.

[6] Nuel Belnap. A Useful Four-Valued Logic. In Modern
Uses of Multiple-Valued Logic. D. Reidel, 1977.

[7] Bob Blakley and Craig Heath. Security Design
Patterns. Technical report, The Open Group, 2004.

[8] Matt Blaze, Joan Feigenbaum, John Ioannidis, and
Angelos Keromytis. The KeyNote Trust-Management
System Version 2. RFC 2704 (Informational), 1999.

[9] Matt Blaze, Joan Feigenbaum, and Jack Lacy.
Decentralized Trust Management. In Proceedings of
the 17th Symposium on Security and Privacy, pages
164-173, 1996.

[10] Glenn Bruns and Michael Huth. Access Control via
Belnap Logic: Intuitive, Expressive, and Analyzable
Policy Composition. Transactions on Information and
System Security, pages 1-27, 2011.

[11] Network Admission Control Configuration Guide
Cisco IOS Release 15MT. http://www.cisco.com/en/
US/docs/ios-xml/ios/sec_usr_nac/configuration/
15-mt/sec-usr-nac-15-mt-book.pdf.

[12] Jason Crampton and Michael Huth. An Authorization
Framework Resilient to Policy Evaluation Failures. In
Proceedings of the 15th European Conference on
Research in Computer Security, pages 472—487, 2010.

[13] John DeTreville. Binder, a Logic-Based Security
Language. In Proceedings of the Symposium on
Security and Privacy, pages 105-113, 2002.

[14] Daniel J. Dougherty, Kathi Fisler, and Shriram
Krishnamurthi. Specifying and reasoning about
dynamic access-control policies. In Ulrich Furbach and
Natarajan Shankar, editors, IJCAR, volume 4130 of
Lecture Notes in Computer Science, pages 632—646.
Springer, 2006.

[15] Kathi Fisler, Shriram Krishnamurthi, Leo A.
Meyerovich, and Michael Carl Tschantz. Verification
and Change-impact Analysis of Access-control
Policies. In Proceedings of the 27th International
Conference on Software Engineering, pages 196-205.
ACM, 2005.

[16] Simone Frau and Mohammad Torabi Dashti.
Integrated Specification and Verification of Security
Protocols and Policies. In Proceedings of the Computer
Security Foundations Symposium, pages 18 —32, 2011.

[17] Deepak Garg and Frank Pfenning. Stateful
authorization logic - proof theory and a case study.
Journal of Computer Security, 20(4):353-391, 2012.

[18] Yuri Gurevich and Itay Neeman. DKAL:
Distributed-Knowledge Authorization Language. In
Proceedings of the 21st Computer Security
Foundations Symposium, pages 149-162, 2008.

[19] Arno Haase. Java Idioms: Exception Handling. In
Proceedings of the Tth European Conference on
Pattern Languages of Programs, pages 41-70, 2002.

[20] Michael Howard, David LeBlanc, and John Viega. 2/
Deadly Sins of Software Security: Programming Flaws
and How to Fir Them. McGraw Hill, 2009.

[21] KABA KES-2200.
http://wuw.kaba.co.nz/Products-Solutions/
Access-Control/Electric-Locking/34392-32446/
electric-strikes.html.

[22] Kerberos 5, Release 1.2.8. http://web.mit.edu/
kerberos/www/krb5-1.2/krb5-1.2.8/.

[23] Vladimir Kolovski, James Hendler, and Bijan Parsia.
Analyzing Web Access Control Policies. In Proceedings
of the 16th International Conference on World Wide
Web, pages 677-686. ACM, 2007.

[24] Barbara S. Lerner, Stefan Christov, Leon J. Osterweil,
Reda Bendraou, Udo Kannengiesser, , and Alexander
Wise. Exception Handling Patterns for Process
Modeling. IEEE Transactions on Software
Engineering, pages 162-183, 2010.

[25] Ninghui Li, J.C. Mitchell, and W.H. Winsborough.

Design of a Role-based Trust-management

Framework. In Proceedings of the Symposium on

Security and Privacy, pages 114-130, 2002.

Disabling Firewall Service Lockdown due to Logging

Failures. http://technet.microsoft.com/en-us/

library/cc302466.aspx.

OpenSSO Enterprise 8.0, Authentication Service

Failover. http://docs.oracle.com/cd/E19681-01/

820-3885/gbarl/index.html.

[28] Red Hat 6.5, 2.8.2.1 Firewall Configuration Tool.

http://access.redhat.com/site/documentation/

en-US/Red_Hat_Enterprise_Linux/6/.

Jerome H. Saltzer and Michael D. Schroeder. The

Protection of Information in Computer Systems.

Proceedings of the IEEE, pages 1278-1308, 1975.

[30] Spring Security.

http://projects.spring.io/spring-security/.

Herbert H. Thompson, James A. Whittaker, and

Florence E. Mottay. Software Security Vulnerability

Testing in Hostile Environments. In Proceedings of the

Symposium on Applied Computing, pages 260—-264,

2002.

[32] Petar Tsankov, Srdjan Marinovic, Mohammad Torabi
Dashti, and David Basin. Decentralized Composite
Access Control. In Principles of Security and Trust,
pages 245-264, 2014.

[33] John Viega and Gart McGraw. Building Secure

Software: How to Avoid Security Problems the Right

Way. Addison-Wesley, 2002.

Jeffrey M. Voas and Gary McGraw. Software Fault

Injection: Inoculating Programs Against Errors. John

Wiley & Sons, 1997.

[35] IBM WebSphere.
http://wuw-01.ibm.com/software/websphere/.

26

27

129

31

34

[36] eXtensible Access Control Markup Language
(XACML) Version 3.0.
http://docs.oasis-open.org/xacml/3.0/xacml-3.
O-core-spec-cd-03-en.html.

[37] XACML Failure Handling Flaw.
https://lists.oasis-open.org/archives/xacml/
200703/doc00000.doc.

[38] eXtensible Access Control Markup Language
(XACML) Version 2.0.
www.oasis-open.org/committees/tc_home.php.

APPENDIX
A. ATTACK ON THE GRID PDP

We simulate here the attack on the grid PDP module, as
discussed in §5. To do this, we first encode the PDP module
in our interpreter using BelLog’s ASCII format:

pol(X) :- owner(X)

pol(X) := (pol(Y) ~ grant(Y,X))

grant(X,Y) :- (delegate(X,Y) ~
(('revoke(X,Y)@rev) -bot-> owner(X)))

The ASCII encoding of a BellLog rule a < bisa :- b. We
write the operators —, ~, and A with the ASCII symbols
!, ~, and ~, respectively. To ease the writing of BellLog
specifications, we have implemented several of the syntactic
shorthands presented in §4. For example, the v-override
operator 5 is written as —v—>, where v is true (t), false (f),
bot (L), or top (T). Our interpreter also supports BelLog’s
extension for nesting and composing rule bodies with the
operators !, ~, and ~; see for example the last rule in the
specification given above. For the complete ASCII syntax
see www.infsec.ethz.ch/research/software/bellog.

Second, we specify the PDP input produced by our anal-
ysis tool in §5.3:

owner (piet) :- true

delegate(piet,ann) :- true
delegate(ann,fred) :- true
revoke (piet,ann)@rev :- bot

Note that we need not explicitly write the rule
revoke(ann,fred) :- false

because the default truth value assigned to any atom is
false.

Finally, we run the interpreter and verify that the attacker
gains access. We observe that the PDP grants access to Fred
because his request pol(fred) evaluates to true. This be-
havior does not conform to FR2: the PDP must deny access
to Fred because he does not have a non-revoked delegation
chain and he is not among the owner’s direct delegates.

