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Business process integration and automation are among the most significant factors

driving the information technology industry today. In addressing the manifold

technology challenges of integration and automation, new standardization efforts aim

at improving the interoperability of businesses by moving toward a declarative

specification of business processes, that is, one which describes what a business

process does and not how it is implemented. At the same time, Model Driven

Architecturet focuses on improving the software-engineering methods with which

business process solutions are implemented by separating the business or application

logic from the underlying platform technology and representing this logic with precise

semantic models. In this paper, we present an approach to the model-driven

generation of programs in the Business Process Execution Language for Web Services

(BPEL4WS), which transforms a graphically represented control-flow model into

executable code by using techniques that originated in compiler theory. We discuss

the underlying algorithms as well as general questions concerning the representation

and analysis of model transformations. We study a declarative representation of

transformation rules, where preconditions and postconditions are represented in the

Object Constraint Language. By adopting a declarative approach, we pave the way for

future automatic consistency checking of transformation rules and bidirectional

reconciliation of evolving models.

Model Driven Architecture** (MDA**) has been

proposed by the Object Management Group (OMG)

to enhance the efficiency and quality of software

development and to reinforce the use of an enter-

prise architecture strategy. Models can be specified

from different views, such as that of a business

analyst or an information technology (IT) architect,

and can be represented at different levels of

abstraction. MDA separates the business or appli-

cation logic from the underlying platform technol-

ogy and represents this logic with precise semantic

models. In particular, MDA distinguishes between
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Platform-Independent Models (PIMs) and Platform-

Specific Models (PSMs). These models are meant to

span the entire life cycle of a software system,

facilitate software production and maintenance

tasks, and increase software quality.

In order for MDA to succeed as a new and emerging

software development paradigm, automatic tools

must be available that address two key challenges in

particular: the analysis and verification of model-

based designs, which allow a human user or an

automatic tool to generate new insights into the

structural and behavioral features of the modeled

system or process; and the mapping and trans-

formation between different models and metamod-

els with the goal of facilitating conversion to and

from PIMs and PSMs. (A metamodel is a precise

definition of the constructs and rules needed for

creating models.)

Figure 1 shows a set of transformations between a

PIM and a PSM. PIMs can be automatically trans-

formed into executable PSMs by compilation tech-

niques. Compilation constitutes the main focus of

this paper. We investigate how compilation trans-

forms a PIM (specified by a UML 2.0** [Unified

Modeling Language** Version 2] activity diagram
1
)

that captures the operational requirements of a

process at the business level into an executable

PSM—namely, a program in the Business Process

Execution Language for Web Service (BPEL4WS)
2

that satisfies the operational requirements captured

in the PIM. Compilation is a one-way process

producing code from a model, where the code and

the model may remain linked or evolve indepen-

dently of each other. In contrast, model reconcilia-

tion links models together such that they remain

synchronized even if those models change, thus

requiring bidirectional transformations. Bidirection-

al transformations between business process models

and IT execution models are of particular impor-

tance, because they enable organizations to develop

business-level and IT-level models at their own

pace, while keeping the models synchronized.

One can easily imagine that a compilation trans-

formation could be implemented in some preferred

programming language. However, the same ques-

tions arise concerning model transformations as

those about models themselves; namely, which

representation best suits a particular transformation

problem, what techniques should be made available

to facilitate the analysis and execution of trans-

formations, and so on. A compilation transforma-

tion that is represented in a particular programming

language can be difficult to analyze and reuse.

Furthermore, it is impossible to reverse the compi-

lation program so that it can be used for reverse

engineering or model reconciliation.

A declarative approach to transformation describes

the goal in terms of relations between the initial and

final states, and contrasts with an imperative

approach, which defines explicit intermediate steps

Figure 1  
Transformation of PIMs and PSMs
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to reach the goal. Declarative approaches have a

clear advantage in that they can be analyzed,

reused, and reversed, and they are investigated in

the second part of this paper. This PIM-PSM trans-

formation is presented in the form of declarative

rules, whose preconditions and postconditions are

described as constraints on models specified in the

Object Constraint Language (OCL).
3

In the future, tools for OCL or other constraint

languages will allow us to verify if a transformation

rule is executable on a given model or metamodel

(i.e., its preconditions can be satisfied), if rules are

consistent with each other (i.e., their preconditions

and postconditions are not contradictory), and if a

rule-based transformation will terminate. So far, no

widely agreed-upon approach exists on how to

declaratively represent transformations, and the

model reconciliation problem has been solved only

in a rudimentary manner, namely, under the

condition that class diagrams and Java method

signatures are synchronized.

This paper is organized as follows. The next section

introduces business-process transformation and the

business-process diagrams that are the input to our

model analysis and transformations. This section

also presents an example of a business process, a

Web-enabled electronic purchasing system, that will

be used throughout the paper. The section following

this presents a simple but powerful method to split

large and complex business-process diagrams into

meaningful subprocesses that are then amenable to

automatic compilation into BPEL4WS. The main

section introduces an augmented variant of T1-T2
4

analysis as the foundation of our model trans-

formation, followed by a discussion of the technical

details of the transformation rules and their declar-

ative encoding in OCL. The paper concludes with a

summary and outlook.

BUSINESS PROCESS MODEL TRANSFORMATION

The increasing importance of the model-driven

approach for the implementation of business solu-

tions is evident from the involvement of leading IT

companies and the ongoing standardization efforts

in this area. IBM’s WebSphere* Business Integration

Modeler Version 5
5
allows designers to automati-

cally generate BPEL4WS programs as well as code

for the MQ Series* workflow platform from process

models captured in a variant of the Activity Decision

Flow Diagram.
6
SAP has partnered with ARIS,

7
IO,

and NetWeaver to generate SAP solutions from ARIS

models. Microsoft integrates modeling and code

generation based on domain-specific languages into

its .Net platform.
8
So far, the code generation

capabilities of these tools are limited, and they only

work for business process models that adhere to

numerous restrictions. In particular, flows that

contain unstructured cycles or that combine cycles

and concurrency cannot automatically be trans-

formed into code. The reasons for these restrictions

are twofold:

1. The semantics of business process modeling

techniques tends to be on the ‘‘intuitive’’ side, to

meet the flexibility needs of business consultants.

This can make code generation more difficult, if

not impossible, because of semantic ambiguities.
9

2. Transformation methods that can map large and

complex business process models to executable

and well-performing code are still under devel-

opment and are not yet well established in

commercial code generation tools.

In our work, we develop transformation methods

that target these limitations. In this paper, we report

on a novel transformation method that allows us to

generate code from graphical business process

models containing unstructured sequential cycles.

We study subsets of the upcoming Version 2.0 of

UML, which focuses in particular on improvements

of the modeling of behaviors and processes. UML

2.0 activity diagrams have been greatly enhanced for

this purpose and are therefore of major interest as

input into our automatic transformation methods.

Our target PSM is given by BPEL4WS because of the

substantial support this language has in the industry

as the upcoming standard for describing Web

service orchestrations and because of the role it

plays in the WebSphere Business Integration Mod-

eler product.

Business process modeling with UML

Figure 2 shows a model of a business process in the

graphical notation of UML 2.0 activity diagrams,

which we will use as an example throughout this

paper. Because the precise distinction between

behaviors, actions, and activities is not yet finalized

in UML 2.0, the following terminology is used in this

model. The main types of nodes are action nodes,

which refer to executable actions that may change

incoming data, and control nodes, which route data
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without changing it. In the graphical representation,

actions are represented by rounded-corner rectan-

gles. Four types of control nodes are distinguished:

decision nodes and merge nodes are represented

using a diamond-shaped symbol, while forks and

joins are represented by vertical bars. In the limited

class of activity diagram models that we consider

here, edges represent control flow only. The entry

into a flow is depicted by a solid black circle;

whereas, the exit from a flow is depicted by a

crossed circle. Each edge can be annotated with a

guard condition, which must be satisfied in order for

the transition to take place.

To describe our example model, we use abstract

mnemonic strings to represent these guard condi-

tions—their internal logic is hidden to simplify the

following discussion and because it plays no major

role in the presentation of the transformation

methods. An edge without a guard condition means

that the transition is unconditional.

The model depicts the control flow of a Web

enterprise customer commerce system (ECCS),
10

which specifies the electronic purchasing of prod-

ucts via a Web interface. The model contains two

major business processes: an authentication process,

in which users register their personal data and log

on to the system, and a shopping process, in which

users select products and submit orders.

The authentication process works on a user-specific

authentication data object; whereas, the shopping

process works on a data object that combines data

relevant to the shopping session with user-specific

information. One purpose of the activity diagram is

to specify the life cycle of these data objects and the

order in which various actions may change them.

The authentication process begins with an init (or

initialization) step, in which the authentication data

object is created for a new user or activated for a

user already known to the system. Known users can

proceed to log on to the purchasing system;

otherwise, users are requested to register and

submit further information. The logon step may fail

if the user’s registration has expired and all

information that was stored has been removed. In

this case, the user has to register again. When the

logon step succeeds, the user data is verified with an

authenticate action. All user-relevant data stored in

the authentication data object, such as credit card

information, open shopping sessions, open and

filled orders, as well as delivery addresses, is

activated and provided to the subsequent shopping

process.

The shopping process contains two concurrent

subprocesses, one for product selection and one for

verification. The product selection subprocess

allows the user to select and possibly configure

products. If a user has an uncompleted shopping

session with items placed in the shopping cart but

not ordered, the cart is reactivated and the data is

made available to the user. New products can be

selected and configured until they are finally put

into the shopping cart. To keep the process flexible,

the user can jump back and forth between the

various actions, but the user must leave the product

selection process via the order action, which handles

Figure 2  
Business-process model of an enterprise customer commerce system
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the submission, cancelation, and deferral of orders

placed on products in the shopping cart.

The verification subprocess is kept very simple in

our example. It contains only a single verify action,

which stands as a placeholder for any more complex

actions or activities that may be needed to ensure

the security and integrity of the electronic shopping

process. The model specifies only that a verify action

must have been completed successfully for the order

action to become executable. Without this informa-

tion, no order can be submitted, and the process

cannot be exited in a valid way. The guard

conditions on edges leaving decision nodes are

denoted with mnemonic names. For example, the

condition for transition from the init action to the

logon action through decision D1 is denoted il, while

the condition for the transition from the authenticate

action to fork F1 through decision D4 is denoted aF1.

Semantics of UML activity diagrams

UML 2.0 adopts a token flow semantics to describe

when a node in a flow can execute. We assume the

following semantics, which closely follows the

established interpretation of UML 2.0 activity dia-

grams:
11

� An action node can execute when a control token

arrives at one of its incoming edges (XOR

semantics). It places a control token on its single

outgoing edge, which has a guard condition that is

always true.
� A decision node can execute when a control token

arrives at its single incoming edge. It places a

control token on exactly one of its outgoing edges

(XOR semantics), namely, the one edge whose

guard condition is satisfied. This semantics

assumes the guard conditions of all outgoing

edges of a decision node are mutually exclusive

and exhaustive.
� Amerge node has the same token flow behavior as

an action node.
� A fork can execute after a token arrives on its

single incoming edge. It places control tokens on

all of its outgoing edges (AND semantics) and

thereby starts parallel executions of flows. We

assume that outgoing edges of forks are only

annotated with guard conditions that are true.
� A join can execute when control tokens arrive on

all of its incoming edges (AND semantics). It

places a control token on its single outgoing edge.

Note that we formulated restrictions on the incom-

ing and outgoing edges. These restrictions ensure

that our graphical models have nodes with only

AND or XOR semantics for the incoming and

outgoing edges, but not both, in order to avoid the

subtleties of full UML 2.0 activity diagrams. As a

consequence, decision nodes in our example can

only start a single flow, and merge nodes always

have only one active flow arriving. Concurrent flows

can only be triggered by forks, but not by actions or

decision nodes as is possible in the full UML 2.0

activity diagrams.

Model transformation of full UML 2.0 activity

diagrams requires the formalization of their seman-

tics with greater precision than is available today.

Preliminary approaches to formalizing UML subsets

based on Petri nets,
12

labeled transition systems,
13

abstract state machines,
14

and Pi-calculus
15

have

been presented recently. The semantics are usually

used to devise techniques to automatically verify

properties of the activity diagrams. However, none

of these formalizations is worked out in such detail

that it can help in developing sound transformation,

normalization, or refactoring algorithms that trans-

form one arbitrary UML 2.0 activity diagram into

another, equivalent representation. Similarly, for-

malizations of BPEL4WS have been developed

based on communicating automata,
16

abstract state

machines,
14

and Petri nets,
17

but scalable algorithms

that allow a tool to automatically reason about a

given BPEL4WS program are only in the initial state

of development.
16,18

AUTOMATIC ANALYSIS OF CONTROL-FLOW
MODELS

The informal description of the ECCS example

clearly distinguished several meaningful subpro-

cesses, which interact with each other to implement

the ECCS system. The control-flow model for this

example is ‘‘flat’’ in the sense that it does not use

structured activities to create a hierarchical model in

which the various subprocesses can be easily

identified. In order to improve the scalability and

performance of model compilation techniques, it

makes sense to complement them with analysis

techniques that can identify such subprocesses

instead of relying on the human designer to provide

a well-structured hierarchical model. Today’s

workflow code-generation tools lack such analysis

capabilities and would map large, flat models to

large, monolithic code.
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The close relation of control-flow models to control-

flow graphs of programming languages enables the

use of techniques from the fields of compiler

optimization and program synthesis in addressing

the model transformation problem. Control-flow

analysis can reveal very interesting insights into a

structure of a business process that can later be

exploited to generate optimized workflow instruc-

tions.

In the following, we discuss two main techniques:

an automatic analysis to discover subprocesses in

large, flat control-flow diagrams based on so-called

two-terminal regions, and an automatic analysis of

how to transform sequential flows containing

unstructured cycles into compact workflow code

based on the notion of reducibility from compiler

theory. In the latter technique, flows with unstruc-

tured cycles that have a nonreducible control-flow

graph are transformed into a state machine repre-

sented in BPEL4WS, while flows with unstructured

cycles that have a reducible control-flow graph are

normalized and encoded in BPEL4WS.

Identification of subprocesses

A closer look at Figure 2 shows that structural

regions in the control-flow graph correspond to the

ECCS subprocesses discussed previously. These

regions are characterized by sets of nodes that have

a single entry node to the region and a single exit

node from the region. This structural characteristic

seems to be quite common in control-flow models,

and it can be exploited to identify regions in the

process model that can be analyzed independently

of each other. Flow-graph analysis of computer

programs has defined so-called two-terminal re-

gions,
19

which provide an appropriate definition of

the structures in which we are interested. We next

review some relevant concepts from compiler

theory
20

that form the foundation for our analysis

and transformation techniques.

Definition 1. In a directed graph with one entry and

one exit node, a node n is said to dominate (or

predominate) a node m if every path from the start

node to node m goes through node n. The

dominance relation is transitive; that is, if a node n
1

dominates a node n
2
and n

2
in turn dominates

another node n
3
, then n

1
also dominates n

3
.

Definition 2. A node m postdominates a node n if

every path from node n to the exit node goes

through node m. If there is an edge from a node n to

a node m in the graph, then n is called the

predecessor of m, while m is called the successor

of n.

Definition 3. A two-terminal region is a subgraph

where

1. a single entry node exists in the set that

dominates all other nodes in the set, as well as all

their predecessors, which must also be in the set,

and

2. a single exit node exists in the set that post-

dominates all other nodes in the set as well as

their successors, which must also be in the set.

The two requirements in this definition ensure that

(1) there is no path from the outside into the two-

terminal region that does not pass through the entry

node, and (2) there is no path from the two-terminal

region to the outside that does not pass through the

exit node.

The notion of two-terminal regions can be used as a

heuristic to discover subprocesses in large control-

flow graphs. Applied to the ECCS example, the

heuristic identifies the following regions:

1. A region R1 comprising the init (entry node),

register, logon, and authenticate actions and the

decision nodes D1, D2, D3, and D4 (the exit

node).

2. A region R2 with entry node fork F1 and exit node

join F4 to comprise the verify, select, configure,

put, and order actions.

3. A nested region R3 inside region R2 with entry

node select, exit node merge M, and the configure

and put actions.

After having identified these three possible regions

in the ECCS, each of the regions can be analyzed

separately. Regions R1 and R3 comprise unstruc-

tured cyclic flows, which are sequential. No

parallelism can occur because of the restrictions we

imposed on the control-flow semantics. Unstruc-

tured cycles have more than one entry or exit point

into or out of the cycle. Region R2 is a concurrent

region, in which the cyclic product-selection process

synchronizes with the simple verification process,

but the synchronization link lies outside the

unstructured cycle. The cycle contains the select,

configure, and put actions; whereas, the synchroni-

zation is established between the verify and order

actions.
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The structure of cycles and the types of synchroni-

zation (between cyclic or linear threads) have to be

transformed into functionally equivalent BPEL4WS

code. Functional equivalence establishes a desirable

correctness criterion for our subsequent transfor-

mation. When provided with the same input data,

the original control-flow model and the generated,

functionally equivalent BPEL4WS model yield the

same output. Functionally equivalent transforma-

tions of Turing-complete programs are always

possible,
21

but may require the introduction of new

guard variables and the duplication of code in the

case of nonreducible flow graphs. In the worst case,

the transformation may lead to an exponential

expansion (or ‘‘blow-up’’) of the program.
20,22

Transforming the unstructured cyclic flows con-

tained in regions R1 and R3 of the ECCS to BPEL4WS

poses a particular problem, because the BPEL4WS

language forbids unstructured cycles. Link elements

in BPEL4WS define synchronization, and each link

element has a source and a target activity. Control

flow in BPEL4WS can be specified by using explicit

BPEL4WS link elements or BPEL4WS structured

activities such as sequence, switch, and while, the

latter only allowing the designer to describe struc-

tured cycles. The while activity has a single exit, and

it is exited when its defined termination condition is

no longer valid. No unstructured control flow into or

out of a while activity is permitted because link

elements are not allowed to have their source activity

within a while activity and their target activity

outside, or vice versa. Furthermore, the control flow

defined via link elements must be acyclic, that is, no

cycles can be established via links.

Unstructured cyclic flows can be transformed into

well-formed BPEL4WS by adapting control-flow

normalization techniques from compiler theory.
23,24

However, these techniques are currently limited to

nonconcurrent cycles only. Fortunately, regions R1

and R3 are nonconcurrent and can therefore be

transformed using these techniques. The concurrent

region R2 is acyclic when we consider R3 as a single

structured activity node. Furthermore, synchroni-

zation only takes place between sequential actions

that are not part of any loop. Figure 3 outlines the

structure of the BPEL4WS code which results from

our analysis.

The ECCS model can be considered as a typical

example that falls into a limited, yet practically

relevant class of concurrent processes, which seems

to occur frequently in business process designs. In

this class, each of the parallel flows may contain

unstructured cycles, but any synchronization be-

tween the parallel flows only takes place between

BPEL4WS activities lying outside of cycles. In the

next subsection, we describe the basic principles

underlying the transformation of regions R1 and R3

into functionally equivalent BPEL4WS code.

Reducibility of identified regions

As we briefly mentioned previously, the trans-

formation of unstructured cycles may lead to an

exponential expansion of the transformed program.

This problem occurs in the case of nonreducible flow

graphs. The notion of reducibility plays a major role

in compiler theory.
20

In fact, many normalization

and optimization techniques apply to reducible

control-flow graphs only. Several techniques to

determine the reducibility of control-flow graphs

exist, one of the most established techniques being

T1-T2 analysis.
4
In this technique, T1 and T2 are

rules which stipulate the following:
20

Rule T1. If n is a node with a loop, that is, it has an

edge which starts and ends at node n, delete that

edge.

Rule T2. If there is a node n (not the initial node)

that has a unique predecessor m, then m may

consume n by deleting n and making all successors

of n (including, possibly, m) successors of m.

After rules T1 and T2 have been applied (in any

order), the limit-flow graph can be computed. The

limit-flow graph remains when the rules T1 and T2

have been applied repeatedly until neither rule is

applicable. If the limit-flow graph collapses into a

single node, then the flow graph is reducible;

Figure 3  
Outline of the generated BPEL4WS code
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otherwise, it is not. Figure 4 shows the results of the

T1-T2 analysis of region R1, wherein three nodes

remain, all of which lack a unique predecessor.

Consequently, R1 is nonreducible. We omit the

analysis of R3, which collapses into a single node

and thus is reducible.

As a result of this analysis, we know that any

normalization of the control flow of R1 which

replaces unstructured cycles with structured cycles

and possibly additional guard conditions will

require the duplication of action nodes. We also

know this duplication can be exponential in the

worst case. This is not very desirable when we think

of executing such a flow in BPEL4WS code. A better

alternative is to proceed with normalization until the

limit-flow graph is reached and then map the control

flow encoded in the limit-flow graph directly to a

state machine encoded in BPEL4WS. Region R3 can

be normalized without the danger of code duplica-

tion because its underlying control-flow graph is

reducible. We discuss both transformations in the

next section.

TRANSFORMATION OF CYCLIC SEQUENTIAL
PROCESSES INTO BPEL4WS

This transformation is based on augmented T1-T2

rules, which collapse a control flow into a graph

with fewer top-level nodes and edges, following

which BPEL4WS code can be generated. T2 takes a

node n and its predecessor m in the activity diagram

and merges them into a new node s. T1 takes a node

n in the activity diagram, removes the self edge, and

turns it into a loop node. If the original activity

diagram was reducible, the transformation termi-

nates with the activity diagram reduced to a single

top-level structured activity node, at which point it

can then be transformed trivially to a BPEL4WS

model. In the case of nonreducibility, several

structured activity nodes remain after T1 and T2

have been applied. In this case, our approach is to

transform the resulting activity diagram to a

BPEL4WS model by mapping the remaining nodes

to a state machine encoded in BPEL4WS. The

transformations (described in the following subsec-

tion) are applied only to regions in the process

model which comprise sequential processes without

concurrency.

Transformation of nonreducible cyclic flows

The state machine that is used in the case of

nonreducibility is a behavioral state machine in the

sense of UML 2.0. It is a convenient representation

to define the life cycle of objects—an idea also

proposed by the approach described in ADoc-

oriented programming.
25,26

In our case, the life cycle

of authentication data consisting of identities, pass-

words, and other user-specific data is described with

this state machine.

The control flow diagram of region R1 is trans-

formed into a state machine in a straightforward

way by using the T1 and T2 rules until a limit-flow

graph is reached that is not reducible further. Figure

5 illustrates the results of this transformation. Rule

T2 merges all decision nodes with their preceding

actions and accordingly updates the outgoing con-

trol edges exiting the actions. It also merges the

logon and authenticate actions into a new structured

activity node. This new node, as well as the register

action, has a self loop. To both loops, rule T1 can be

applied, introducing two new loop nodes, which we

represent in textual form on the right side of

Figure 5. With these transformation steps, the limit-

flow graph is reached, and none of the rules is

applicable anymore.

The remaining structured activity nodes are now

mapped to the BPEL4WS model encoding the

generated state machine within a BPEL4WS while

activity. The init action can be placed outside the

while activity because none of the other actions has

an outgoing edge leading back to init. In the

BPEL4WS model, the iteration of the while activity is

controlled by the value of a next variable that is

initialized after the start action init is invoked. Each

action is encoded as a Web service invocation.

These BPEL4WS invoke activities are synchronous,

resulting in the guard variables immediately being

updated. We omit the details concerning how the

Figure 4  
The nonreducible limit-flow graph of region R1

logon, D3, 
authenticate, D4

init, D1

register, D2
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guards are encoded, but one can imagine that a

guard condition may test the values of the authen-

tication data represented in a WSDL (Web Services

Description Language) message that is manipulated

by the activities. Only when the condition aF1 in the

state authenticate is true, is the value end assigned

to the next variable and the final state reached. The

resulting BPEL4WS code is shown in Figure 6.

In Reference 27, a representation of state machines

in the form of ‘‘ADocs’’ with a mapping to J2EE**-

specific runtime components like session and entity

beans is discussed. In our case, we encode state

machines in BPEL4WS code, and this is their

executable model. The advantage of the encoding is

that we can easily combine state machines with

Petri-net-like flows by using the same runtime

model. Furthermore, BPEL4WS provides a straight-

forward means of communication between state

machines and flows by means of Web services.

Transformation of reducible cyclic flows

The transformation of reducible cyclic flows pro-

ceeds in the same way as the transformation of

nonreducible cyclic flows, the only difference being

that the activity diagram can be reduced to a single

structured activity node containing appropriate loop

activities instead of unstructured cycles. Thereafter,

a BPEL4WS model is generated by introducing the

corresponding sequence, switch, and while activities.

Figure 7 summarizes the transformation steps

performed on region R3. Edges to which a trans-

formation is applied are shown with dashed lines.

The result of the transformation is a mapping

between the activity nodes in the activity diagram

and the structured activity nodes in the reduced

activity diagram.

Figure 7 depicts a specific order of the application of

the two rules. For example, in step B, merge and put

could alternatively be transformed by using T2,

while in step C, T1 could be applied to remove the

self edge. From the point of view of the activity

diagram, any order of rule application will result in a

single activity node in the final model. From the

point of view of the BPEL4WS model generated after

the reduction steps, the order in which the rules are

applied determines the structure of the BPEL4WS

code. By choosing a specific order in the reduction

steps, BPEL4WS code can be optimized with respect

to various requirements—an issue further discussed

in Reference 27.

In the following section, we discuss the declarative

representation of the T1-T2 rules in OCL and briefly

describe the mapping from T1-T2 reduced activity

diagrams to BPEL4WS models.

DECLARATIVE REPRESENTATION OF AUGMENTED

T1-T2 RULES

It is quite obvious how the transformation rules T1

and T2 can be implemented in a procedural manner.

However, we are interested in investigating whether

a declarative representation of these rules is possible

and what its advantages and disadvantages are. We

are motivated by the ongoing discussions around

Figure 5  
Results of T1-T2 transformation; (A) the state machine controller for the authentication subprocess;  
(B) the partially reduced UML 2.0 activity model upon termination of T1-T2 analysis 
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the emerging OMG standard for Query/Views/

Transformations (QVT).
28

Many submissions in

response to the QVT Request for Proposals (RFP)

envision the use of declarative or hybrid languages

to represent queries, views, and transformations on

models. Among the various language proposals,

OCL is a favorite.
3,29

Role of OCL in model transformation

OCL is the standard language in UML for specifying

constraints on object-oriented models. UML

Version 1 uses OCL either to add invariants to a

model or parts of it or to specify the preconditions

and postconditions for dynamic UML elements such

as state machines or methods. In UML 2.0, OCL is no

longer limited to expressing constraints of models,

but is envisioned as a general-purpose language to

express queries, transformations, arbitrary condi-

tions, and business rules.
3
The use of OCL for model

transformations is also supported by the revised

QVT submission,
30

where OCL is extended to

describe relations between models. In our case

study, we used OCL to define the preconditions and

postconditions for our augmented T1-T2 rules. The

precondition captures necessary and sufficient con-

ditions that determine when a rule is applicable. The

postcondition describes the intended update to the

model, that is, the effect of the transformation.

An OCL specification consists of two parts, a context

and a set of expressions. For example, we show the

dequeue method that returns the first element of a

queue and removes that element from a queue:

context Queue::dequeue(): QueueElement
pre: self.notEmpty
post: self.size = self.size@pre - 1
post: result = self.firstElement@pre

The precondition ensures that the queue is not

empty (self refers to an object of type Queue). The

postcondition states that the queue, when the

method terminates, will be shorter by one element,

and the first element of the original queue will be

returned. The OCL operator @pre is used in the

postcondition to reference the value of a model

element at the beginning of the computation; for

example, q.size@pre denotes the value of

q.size when the method begins to execute. The

OCL reserved word result denotes the result that

is computed by a method.

OCL allows the modeler to navigate within an

object-oriented model. Figure 8 shows a fragment of

the UML 2.0 activity diagram metamodel, on which

the transformation operates. An ActivityNode in the

model has an association with a set of edges

named incoming. Thus, N.incoming denotes

the set of edges that enter node N. Operations on

sets are performed using the operator ! as, for

Figure 6  
Generated abstract BPEL4WS code for region R1

<process>
 <sequence>
  <invoke in i t/>
  <switch>
   <case condi t ion= ' i l '>
    <ass ign 'nex t :=logon'/>
   </case>
   <case condi t ion= ' i r '>
    <ass ign 'nex t :=regis ter '/>
   </case>
  </swi tch>
  <whi le condi t ion= 'nex t !=end'>
   <swi tch>
    <case condi t ion= 'nex t=logon'>
     <ass ign ' looping_l :=true'/>
     <whi le condi t ion= ' looping_l '>
      <invoke logon/>
      <swi tch>
       <case condi t ion= ' la '>
        <invoke authent icate/>
       </case>
      </swi tch>
      <ass ign ' looping_l :=la & a l '/>
     </whi le>
     <swi tch>
      <case condi t ion= ' l r '>
       <ass ign nex t :=regis ter/>
      </case>
      <case condi t ion= ' la  & aF1'>
       <ass ign nex t :=end/>
      </case>
     </swi tch>
    </case>
    <case condi t ion= 'nex t=regis ter '>
     <ass ign ' looping_r :=true'/>
     <whi le condi t ion= ' looping_r '>
      <invoke reg is ter/>
      <ass ign ' looping_r :=rr '/>
     </whi le>
     <swi tch>
      <case condi t ion= ' r l '>
       <ass ign nex t :=logon/>
      </case>
     </swi tch>
    </case>
   </swi tch>
  </whi le>
  </sequence>
</process>
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example, in N.incoming!isEmpty(). Naviga-
tions can be chained by using the OCL shorthand

notation for the collect operation; for example,

N.incoming.source denotes the set of nodes

from which an edge leads to N.

OCL provides different types of collections and a

considerable set of operations. We use the type Set,
which corresponds to the mathematical definition of

a set (i.e., elements are not ordered, and each

element occurs at most once) and the type

Figure 7
Control-flow normalization of region R3
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pM

sM | (sc and cM) sp | (sc and cp)ps

select;
if sc configure endif;

ss | (sc and cs) |
((sp | (sc and cp)) and ps)

sM | (sc and cM) | 
((sp | (sc and cp)) and pM) 

Merge

select;
if sc configure endif;
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Merge

repeat
   select;
   if sc configure endif;
   if sp | (sc and cp) put endif;
while ss | (sc and cs) | ((sp | (sc and cp)) and ps);

repeat
   select;
   if sc configure endif;
   if sp | (sc and cp) put endif;
while ss | (sc and cs) | ((sp | (sc and cp)) and ps);
if sM | (sc and cM) | ((sp | (sc and cp)) and pM) 
merge endif;

Before consumption of configure by selectA Before consumption of put by selectB
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Before removal of self-edge in selectC

Before consumption of merge by selectD After terminationE
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Sequence, which corresponds to a list (i.e.,

elements are ordered and may occur more than

once). Examples of collections are Setf1,2,3g and

Setfeg. The former denotes a set containing the

numbers 1, 2 and 3. The latter denotes a set that

contains a single element e.

As OCL expressions tend to become rather lengthy,

let expressions can be used to introduce new

variables that abbreviate expressions. For example,

let (nodes = N.incoming.source) in
nodes!notEmpty()

defines nodes as an abbreviation for

N.incoming.source, which can then be refer-

enced in the OCL expression nodes!notEmpty().
The scope of let is limited to a single OCL

expression.

To summarize, OCL provides features to navigate

within object-oriented models, to deal with model

elements, and to express statements about the result

of an operation and the state of the model before an

operation is executed. This justifies the emphasis

given to OCL by the upcoming QVT standard.

Figure 8  
Fragment of the UML 2.0 activity diagram metamodel
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Representing the augmented T1 rule in OCL

Figure 9 shows the desired transformation: a node N

with a self-looping edge e that is guarded by e.guard

is transformed into a set of three nodes L, T, and N

that form the head, test expression, and body of the

loop expression. In earlier figures, for the purposes

of aiding comprehension, we depicted the loop node

and its accompanying elements as text embedded in

the corresponding activity node. In Figure 9, we

show instead a view of the transformation in terms

of the metamodel instances that are involved in the

transformation. This approach is taken to clarify the

meaning of the OCL specifications.

The OCL constraint shown in Figure 10 defines the

augmented T1 rule for any activity node N that is

passed as a first argument to the transformation

function. The second parameter, of type

ActivityEdge, references the edge e which forms the

self-loop. The relationship between the activity node

N and activity edge e is asserted by the precondition.

The transformation demands the creation of an

object L of type LoopNode that embeds the former

node N as its body and a node T for the evaluation of

the loop’s test expression.

The postcondition describes the update in the

activity diagram: In lines 1 and 2, we postulate the

existence of an object L as an instance of the

LoopNode type. Lines 3 to 5 postulate that L replaces

N, becoming the top-level activity node with respect

to the given activity nodes. As the body of a node

with a self-loop is executed at least once, the

property isTestedFirst is set to false (line 6) to ensure

the same semantics. Lines 7 to 11 demand the

existence of a set of nodes that compute a Boolean

value to determine if another execution of the body

will be performed. Note that the function

node2guardEquivalence in line 10 is a predicate that

is used to define the equivalence between the guard

condition of the ActivityEdge e and the loop

condition T for the LoopNode L. Finally, lines 12 and

13 ensure that node N will not have any incoming or

outgoing edge after the transformation.

Representing the augmented T2 rule in OCL

The transformation performed by T2 in the activity

diagram is much more complicated than is the case

for rule T1. Similarly to the previous subsection, we

describe the transformation in terms of the meta-

model instances that are involved, as depicted in

Figure 11. A ConditionalNode C and a

StructuredActivityNode S are introduced with the

transformation. It places C and ActivityNode M into

S, and it takes the guard condition of edge e as the

test condition of C and the body of node N as the

body of C. Furthermore, transforming the outgoing

edges of the involved nodes requires the identifica-

tion of distinct subsets of outgoing edges and the

merging of certain subsets among them.

Figure 10  
OCL constraint for rule T1

contex t  Ac t iv i t yDiagram: :augmented-T1(N:Ac t iv i t yNode,  e:Ac t iv i t yEdge)

pre:  N. incoming->intersec t(N.outgoing) = Set{e}

post :  LoopNode.a l l Instances() ->ex is ts(L |      - -  l ine  1
           L .oc l IsNew() and      - -  l ine  2
 L . incoming = N. incoming@pre ->exc luding(e) and   - -  l ine  3
 L .outgoing = N.outgoing@pre ->exc luding(e) and   - -  l ine  4
 L .bodyPar t  = N and      - -  l ine  5
 L . isTestedFi rs t  = fa lse and     - -  l ine  6
 Ac t iv i t yNode.a l l Instances->ex is ts(T |     - -  l ine  7
   T.oc l IsNew() and      - -  l ine  8
   L . test  = T and       - -  l ine  9
   node2guardEquiva lence(T,  e .guard@pre)    - -  l ine 10
  )  and        - -  l ine 11
 N. incoming->isEmpty() and     - -  l ine 12
 N.outgoing->isEmpty()      - -  l ine 13
           )
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In the specification for the augmented-T2 rule

shown next, the parameters M and N denote the

involved nodes, and e represents the guarded edge

between them.

context ActivityDiagram::augmented-T2
(M: ActivityNode, N: ActivityNode,

e:ActivityEdge)

The precondition asserts that M is the only

predecessor of N, e is the activity edge connecting

them, and e is the only incoming edge of N.

pre: M.outgoing!includes(e) and
N.incoming = Setfeg

The postcondition specifies the merging of N and M

in a new activity node S. In Figure 12, lines 1 and 2

specify the creation of the new StructuredActivity-

Node S. Line 3 asserts that S takes the incoming edges

of M. (Note that changes to the outgoing edges are

postulated in lines 27–54 and are explained below).

Lines 4 and 5 assert that a new ConditionalNode C is

created. Line 6 asserts that M and C are subnodes of

S. Lines 7 and 8 assert that a new ActivityEdge m2ce

is created. Lines 9–11 assert that m2ce connectsM to

C, and it is contained in S. Lines 13–21 assert that a

newly created Clause Cl has N as its body and a

newly created ActivityNode T, which has an equiv-

alent condition to e.guard, as its test condition. Lines

22–25 assert thatM andN are no longer connected by

edges, except for a single edge to C for M.

Furthermore, the postcondition has to specify the

update on the outgoing edges. Two edges that join

the same source and target nodes can be merged

into a single edge whose guard condition is the

disjunction of the original guards, i.e.,

X!e1 Y;X!e2 Y becomes X !e1_e2 Y:

Similarly,

X!e1 Y;Y!e2 Z becomes X !e1^e2 Z:

Three different sets of edges are distinguished for

the update of the outgoing edges that leave nodes M

and N, depicted in Figure 11. Each of the sets is

captured by a new definition that we introduce via a

let expression within the postcondition.

The set of edges containing the example edge

guarded by c.guard leaves M but does not enter any

node to which outgoing edges from N lead as well.

Furthermore, edge e that connected M and N must

be removed. We capture this subset in the variable

set1 (Figure 12, lines 27–29).

The set containing the edge guarded by d.guard

captures the outgoing edges of node N. These edges

have to be added to node C as additional outgoing

edges. Their guard conditions have to be conjunc-

tively joined with the guard condition e.guard

because N was reachable from M via e only. We

capture this subset in the variable set2 (Figure 12,

lines 30–38).

The subset containing the example edges guarded

by a.guard and b.guard captures the outgoing edges

of nodes N and M, which enter the same target node

K. The new node S inherits these two edges.

However, they can be combined into a single edge

because of the common target node. The guard

condition of the new resulting edge leaving S is the

disjunction of the conditions a.guard and b.guard,

where b.guard is conjunctively joined with the

guard of e. We capture this subset in the variable

Figure 11 
T2 rule augmented by generation of ConditionalNode activities
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set3 (Figure 12, lines 39–53), and the update of the

set of outgoing edges of C can be conveniently

expressed as the union of the three sets, set1,
set2, and set3 (Figure 12, line 54).

Structured activity diagram to BPEL4WS

The transformation of T1-T2 normalized activity

diagrams to BPEL4WS models can also be described

in terms of OCL preconditions and postconditions.

Figure 12  
OCL code of postcondition for rule T2

post :  St ruc turedAc t iv i t yNode.a l l Instances() ->ex is ts(S |                         - -  l ine  1
         S .oc l IsNew() and                                                     - -  l ine  2
         S . incoming = M. incoming@pre and                          - -  l ine  3
         Condi t ionalNode.a l l Instances() ->ex is ts(C |              - -  l ine  4
            C .oc l IsNew() and                                                      - -  l ine  5
            S .nodeContents = Set{M, C} and                                   - -  l ine  6
            Ac t iv i t yEdge.a l l Instances() ->ex is ts(m2cE |                      - -  l ine  7
              m2cE.oc l IsNew() and                                                - -  l ine  8
              m2cE.source = M and                                               - -  l ine  9
              m2cE. target  = C and                                                - -  l ine 10
              S .edgeContents = Set{m2cE}                               - -  l ine 11
   )  and                                                                  - -  l ine 12
   Clause.a l l Instances() ->ex is ts(Cl  |                                      - -  l ine 13
    C l .oc l IsNew() and                                                    - -  l ine 14
   C.c lause = Cl  and                                                    - -  l ine 15
     C l .body = N and                                                      - -  l ine 16
    Ac t iv i t yNode.a l l Instances() ->ex is ts(T |                             - -  l ine 17
      C l .oc l IsNew() and                                                  - -  l ine 18
     C l . test  = T and                                                    - -  l ine 19
     node2guardEquiva lence(T,  e .guard@pre)             - -  l ine 20
     ))   and                                                                 - -  l ine 21
   M. incoming->isEmpty() and                                     - -  l ine 22
   M.outgoing. target  = Set{C} and                                 - -  l ine 23
    N. incoming->isEmpty() and                                  - -  l ine 24
  N.outgoing->isEmpty()                                                  - -  l ine 25
         )   and                                                                    - -  l ine 26
       let   set1:  Set(Ac t iv i t yEdge) = M.outgoing@pre ->selec t(x |      - -  l ine 27
      N.outgoing@pre. target@pre ->exc ludes(x . target)     - -  l ine 28
   ) ->exc luding(e) ,                                                      - -  l ine 29
      set2:  Set(Ac t iv i t yEdge) = N.outgoing@pre ->selec t(x |    - -  l ine 30
                 M.outgoing@pre. target@pre ->exc ludes(x . target)) ->i terate(  - -  l ine 31
                   d:  Ac t iv i t yEdge,  resul tSet :  Set(Ac t iv i t yEdge) = Set{}  |         - -  l ine 32
                     resul tSet ->inc luding(Ac t iv i t yEdge.a l l Instances() ->any(y |  - -  l ine 33 
                        y.oc l IsNew() and                                           - -  l ine 34
                        y.source = e.source and                                    - -  l ine 35
                        y. target  = d. target  and                                    - -  l ine 36
                        y.guard = e.guard.and(d.guard)                             - -  l ine 37
              ))) ,                                                                  - -  l ine 38
              set3:  Set(Ac t iv i t yEdge) = M.outgoing@pre ->selec t(x |               - -  l ine 39
                 N.outgoing@pre. target@pre ->inc ludes(x . target)) ->i terate(  - -  l ine 40
                   a :  Ac t iv i t yEdge,  resul tSet :  Set(Ac t iv i t yEdge) = Set{}  |         - -  l ine 41
                     Ac t iv i t yEdge.a l l Instances() ->ex is ts(y,z |                     - -  l ine 42
                        y.oc l IsNew() and                                           - -  l ine 43
                       y.source = a .source and                                    - -  l ine 44
                        y. target  = a . target  and                                    - -  l ine 45
                        y.guard = a .guard.or(z .guard) and                          - -  l ine 46
       resul tSet ->inc luding(y) and   - -  l ine 47
                        z .oc l IsNew() and                                           - -  l ine 48
                        z .source = e.source and                                    - -  l ine 49
                        let  b = N.outgoing@pre ->any(w |  w. target=a. target) in - -  l ine 50
                          z . target  = b. target  and                                  - -  l ine 51
                          z .guard = e.guard.and(b.guard)                           - -  l ine 52
              ))  in                                                                - -  l ine 53
          S .outgoing = set1->union(set2) ->union(set3)            - -  l ine 54
      )                                                       - -  l ine 55
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As the transformation is relatively straightforward

compared to the T1 and T2 reduction steps, we do

not present the corresponding OCL conditions here.

Once reduced with T1 and T2, an activity diagram

consists of ConditionalNodes and LoopNodes at the

top level, which are ordered by ActivityGroups. In

BPEL4WS, a sequence is used to establish an

ordering on a set of activities. As such, the

transformation of the normalized activity diagram

involves mapping ConditionalNodes to BPEL4WS

switch elements and LoopNodes to while elements,

taking into account the different semantics of the

corresponding constructs.

The transformation of a conditional construct from

activity diagrams to BPEL4WS code is almost trivial,

as there are one-to-one correspondences between

the element pairs ConditionalNode and switch,

Clause and case, and body and activity. Again, we

postulate the existence of a function to convert the

guard condition, as with node2guardEquivalence as

mentioned previously.

The transformation of a LoopNode in UML 2.0 to a

while node in BPEL4WS raises a problem, as these

constructs have one important semantic difference:

if the property isTestedFirst is false (and it will

always be false in our transformation environment,

as seen in line 6 of Figure 10), the body of a

LoopNode is executed once before the loop condition

is tested. In BPEL4WS however, the loop condition

is always tested first when the control flow reaches a

while node. As described in Reference 23, a specific

variable, looping, may be introduced to store the

value of the termination condition. It is set to true

before the while is executed for the first time, and

this ensures that the loop body is executed at least

once. Afterwards, looping is assigned the value of

the original loop condition in the body of the while,

so the original activity N changes to N0. Figure 13

shows the structure of the translation; the code

regarding the variable looping is illustrated in

Figure 14.

Evaluation of OCL for model transformation
OCL provides a precise, formal, and typed language

to specify the preconditions and postconditions of a

transformation rule. In the traditional sense, such an

OCL specification can be used to verify the correct-

ness of an implementation and as the basis for an

implementation. There are a number of examples of

OCL being used for describing transformations, for

example, References 31 and 32. Apart from its

sometimes verbose form, OCL is well-suited for

describing transformation rules on models, mainly

due to its tight integration with object-oriented

models or metamodels.

In a new direction, precondition and postcondition

pairs can be given an execution semantics; this

means that as long as they are internally consistent,

that is, there are no contradictions in either

condition and their termination is ensured, a

precondition and postcondition pair can be executed

to realize the effect described by the semantics. The

precondition is interpreted as the means for deter-

mining the applicability of a transformation rule,

that is, a necessary and sufficient condition for

execution. The postcondition is interpreted as a goal

statement that is to be realized when the precondi-

tion is satisfied. Warmer et al. propose this kind of

framework for OCL in References 3 and 33, and the

framework is further developed in Reference 34.

They extend the notion of precondition and post-

condition by introducing symmetry in the OCL

specification. More precisely, they replace a pre-

condition and postcondition pair with two patterns.

These patterns are described as conditions in OCL,

and they are used to determine the applicability of

the transformation rule, one for each direction of the

transformation (i.e., activity diagrams to BPEL4WS

and vice versa). To describe the transformation, an

additional pattern is used to define the correspon-

dences between elements in the source model and

the target model.

The framework of Warmer et al. greatly improves

the ease with which transformations can be

described in OCL. However, there are some issues

Figure 13
Transformation of a LoopNode to a corresponding
while activity
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bodyParttest activity
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that need to be addressed in using such an

approach. Apart from the impossibility of deter-

mining contradictions and termination (in the

general case), the bidirectional nature of the

specification does not address transformations that

are not a (mathematical) function in a direction, that

is, those which have more than one possible

solution. In theory, one could make a random choice

as to which solution to apply, but in practice, often

only one or a subset of the solutions is desirable.

OCL also has a limitation in expressing complex

transformations. In this context, OCL expressions

can become large, cumbersome, and very difficult to

write, debug, and understand. In particular, map-

pings that are not one-to-one and that are resolved

only with complex or intricate computations can be

difficult to express. Some improvements can be

made by changes to syntax, but most, at least the

deep-rooted issues, require a different approach for

expression. This limitation points out the problems

of many declarative approaches in this context,

which has led to a movement toward hybrid

languages, which mix declarative and imperative

approaches.
29

SUMMARY AND OUTLOOK

We have presented declarative transformations that

enable the generation of executable workflow code

specified in BPEL4WS from the graphical represen-

tation of control-flow diagrams. The transformations

themselves are based on control-flow analysis and

normalization techniques, which originate from the

field of compiler theory. In this paper, we have

investigated their declarative representation using

OCL.

The results we have obtained are encouraging.

Complex transformations can be declaratively de-

scribed when means to reduce the complexity of

declarative statements are provided. These involve a

readable concrete syntax and the ability to introduce

abbreviations for frequently occurring subexpres-

sions and to reuse and embed specialized trans-

formations that target specific transformation

subproblems.

We are following two main avenues of future

research. We are working on extending our trans-

formation methods to more complex control-flow

diagrams that combine concurrent and cyclic flows

Figure 14  
Generated abstract BPEL4WS code for region R3

<process>
 <sequence>
  <ass ign ' looping:=true'/>
  <whi le condi t ion= ' looping'>
   <sequence>
    <invoke selec t/>
    <swi tch>
     <case condi t ion= 'sc '>
      <invoke conf igure/>
     </case>
    </swi tch>
    <swi tch>
     <case condi t ion= 'sp |  (sc & cp) '>
      <invoke put/>
     </case>
    </swi tch>
    <ass ign ' looping:=ss |  (sc & cs) |  ((sp |  (sc & cp)) & ps) '/>
   </sequence>
  </whi le>
  <switch>
   <case condi t ion= 'sM |  (sc & cM) |  ((sp |  (sc & cp)) & pM)'>
    <invoke merge/>
   </case>
  </swi tch>
 </sequence>
</process>
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in a more general way. Such an extension is not

straightforward because it requires that the seman-

tics of general UML 2.0 activity diagrams be strictly

formalized. Although initial formalizations exist,

they do not yet capture the whole expressivity of the

representation; and existing tools, which could

detect inconsistent models, for example, those

containing flows with deadlocks or ‘‘livelocks,’’ are

not very scalable.

At the same time, we are working on a solution for

model reconciliation that will allow us to keep

business-level and IT-level models synchronized

while they are undergoing change and to execute

automatic transformations in both directions. Such

transformations have a high practical relevance in

areas such as business activity monitoring. Current

monitoring tools provide users with a monitoring of

the running IT-level workflows and can only

propagate the monitoring results back to the busi-

ness-level models if a straightforward one-to-one

mapping between both models exist. How monitor-

ing results can be propagated back for models that

have undergone a major transformational change as

discussed in this paper is currently an unsolved

problem.
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Säumerstrasse 4, 8803 Rüschlikon, Switzerland
(koe@zurich.ibm.com). Dr. Koehler is a research staff
member and project leader in the Computer Science
department at the IBM Zurich Research Laboratory. She
received an M.S. degree in computer science and the science
of science from Humboldt University Berlin, Germany, in
1988, a Ph.D. degree in computer science from the University
of Saarbrücken, Germany in 1994, and her habilitation in
computer science from the University of Freiburg, Germany,

in 1999. She joined IBM at the Zurich Research Laboratory in
2001 after being an assistant professor from 1996–1999 and a
project leader in technology management for Schindler AG,
Switzerland, from 1999–2001. She is the winner of several
scientific and best paper awards. Dr. Koehler is a member of
the German Informatics Society and the American Association
of Artificial Intelligence.

Rainer Hauser
IBM Research Division, Zurich Research Laboratory,
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Säumerstrasse 4, 8803 Rüschlikon, Switzerland
(wah@zurich.ibm.com). Mr. Wahler is a doctoral student in
the e-Business Solutions department at the IBM Zurich
Research Laboratory. He received a diploma in computer
science from Technische Universität München in 2003. He
subsequently joined the Business Process Integration and
Automation (BPIA) project, where he is working on
formalizations of model transformation approaches. &

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 KOEHLER ET AL. 65

Internet publication January 7, 2005.


