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Rippling: Meta-Level Guidance for Mathematical Reasoning

Rippling is a radically new technique for the automation of mathematical reasoning. It
is widely applicable whenever a goal is to be proved from one or more syntactically
similar givens. The goal is manipulated to resemble the givens more closely, so that
they can be used in its proof. The goal is annotated to indicate which subexpressions
are to be moved and which are to be left undisturbed. It is the first of many new
search-control techniques based on formula annotation; some additional annotated
reasoning techniques are also described in the last chapter of the book.

Rippling was developed originally for inductive proofs, where the goal was the
induction conclusion and the givens were the induction hypotheses. It has proved
applicable to a much wider class of problems: from summing series via analysis to
general equational reasoning.

The application to induction has especially important practical implications in the
building of dependable IT systems. Induction is required to reason about repetition,
whether this arises from loops in programs, recursive data-structures, or the behavior
of electronic circuits over time. But inductive proof has resisted automation because of
the especially difficult search control problems it introduces, e.g. choosing induction
rules, identifying auxiliary lemmas, and generalizing conjectures. Rippling provides a
number of exciting solutions to these problems. A failed rippling proof can be
analyzed in terms of its expected structure to suggest a patch. These patches automate
so called “eureka” steps, e.g. suggesting new lemmas, generalizations, or induction
rules.

This systematic and comprehensive introduction to rippling, and to the wider
subject of automated inductive theorem proof, will be welcomed by researchers and
graduate students alike.
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Preface

Automated theorem proving has been an active research area since the 1950s
when researchers began to tackle the problem of automating human-like rea-
soning. Different techniques were developed early on to automate the use of
deduction to show that a goal follows from givens. Deduction could be used
to solve problems, play games, or to construct formal, mathematical proofs. In
the 1960s and 1970s, interest in automated theorem proving grew, driven by
theoretical advances like the development of resolution as well as the growing
interest in program verification.

Verification, and more generally, the practical use of formal methods, has
raised a number of challenges for the theorem-proving community. One of
the major challenges is induction. Induction is required to reason about repe-
tition. In programs, this arises when reasoning about loops and recursion. In
hardware, this arises when reasoning about parameterized circuits built from
subcomponents in a uniform way, or alternatively when reasoning about the
time-dependent behavior of sequential systems.

Carrying out proofs by induction is difficult. Unlike standard proofs in first-
order theories, inductive proofs often require the speculation of auxiliary lem-
mas. This includes both generalizing the conjecture to be proven and specu-
lating and proving additional lemmas about recursively defined functions used
in the proof. When induction is not structural induction over data types, then
proof search is also complicated by the need to provide a well-founded order
over which the induction is performed. As a consequence of these compli-
cations, inductive proofs are often carried out interactively rather than fully
automatically.

In the late 1980s, a new theorem-proving paradigm was proposed, that of
proof planning. In proof planning, rather than proving a conjecture by rea-
soning at the level of primitive inference steps in a deductive system, one
could reason about and compose high-level strategies for constructing proofs.

xi
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xii Preface

The composite strategy could afterwards be directly mapped into sequences
of primitive inferences. This technique was motivated by studying inductive
proofs and was applied with considerable success to problems in this domain.
Proof planning is based on the observation that most proofs follow a common
pattern. In proofs by induction, if the inductive step is to be proven, then the
induction conclusion (the goal to be proved) must be transformed in such a
way that one can appeal to the induction hypothesis (the given). Moreover,
and perhaps surprisingly, this transformation process, called rippling, can be
formalized as a precise but general strategy.

Rippling is based on the idea that the induction hypothesis (or more gen-
erally hypotheses) is syntactically similar to the induction conclusion. In par-
ticular, an image of the hypothesis is embedded in the conclusion, along with
additional differences, e.g., x might be replaced by x + 1 in a proof by induc-
tion on x over the natural numbers. Rippling is designed to use rewrite rules
to move just the differences (here “+1”) through the induction conclusion in
a way that makes progress in minimizing the difference with the induction
hypothesis. In Chapter 1 we introduce and further motivate rippling.

From this initially simple idea, rippling has been extended and generalized
in a wide variety of ways, while retaining the strong control on search, which
ensures termination and minimizes the need for backtracking. In Chapter 2
we describe some of these extensions to rippling including the application of
rippling to proving noninductive theorems.

In contrast to most other proof strategies in automated deduction, rippling
imposes a strong expectation on the shape of the proof under development.
As previously explained, in each proof step the induction hypothesis must be
embedded in the induction conclusion and the conclusion is manipulated so
that the proof progresses in reducing the differences. Proof failures usually
appear as missing or mismatching rewrite rules, whose absence hinders proof
progress. Alternatively, the reason for failure might also be a suboptimal choice
of an induction ordering, a missing case analysis, or an over-specific formu-
lation of the conjecture. Comparing the expectations of how a proof should
proceed with the failed proof attempt, so-called critics reason about the possi-
ble reasons for the failure and then suggest possible solutions. In many cases
this results in a patch to the proof that allows the prover to make progress. In
Chapter 3 we describe how these proof critics use failure in a productive way.

Since rippling is designed to control the proof search using the restric-
tions mentioned above, it strongly restricts search, and even long and complex
proofs can be found quickly. In Chapter 5 we present case studies exemplify-
ing the abilities of rippling. This includes its successes as well as its failures,
e.g., cases where the restrictions are too strong and thereby prohibit finding
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Preface xiii

proofs. We also present examples outside of inductive theorem-proving where
rippling is used as a general procedure to automate deduction.

The above-mentioned chapters introduce techniques, extensions, and case
studies on using rippling in an informal way, and provide a good overview
of rippling and its advantages. In contrast, in Chapters 4 and 6 we formalize
rippling as well as extending it to a more general and powerful proof method-
ology. The casual reader may choose to skip these chapters on the first reading.

In Chapter 4 we present the formal theory underlying rippling. In the same
way in which sorts were integrated into logical calculi at the end of the 1970s,
rippling is based on a specialized calculus that maintains the required contex-
tual information. The restrictions on embeddings are automatically enforced
by using a specialized matching algorithm while the knowledge about differ-
ences between the hypothesis and the conclusion is automatically propagated
during deduction. The explicit representation of differences inside of formulas
allows for the definition of well-founded orderings on formulas that are used
to guarantee the termination of the rippling process.

Rippling is a successful example of the paradigm of using domain knowl-
edge to restrict proof search. Domain-specific information about, for example,
the difference between the induction conclusion and the induction hypothesis,
is represented using term annotation and manipulated by rules of a calculus. In
Chapter 6 we generalize the idea of rippling in two directions. First, we gener-
alize the kinds of contextual information that can be represented by annotation,
and we generalize the calculus used to manipulate annotation. The result is a
generic calculus that supports the formalization of contextual information as
annotations on individual symbol occurrences, and provides a flexible way to
define how these annotations are manipulated during deduction. Second, we
show how the various approaches to guiding proof search can be subsumed
by this generalized view of rippling. This results in a whole family of new
techniques to manage deduction using annotations.

In addition to this book there is a web site on the Internet at

http://www.rippling.org

that provides additional examples and tools implementing rippling. We encour-
age our readers to experiment with these tools.
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