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Abstract—We present a general approach for the symbolic
analysis of security protocols that use Diffie-Hellman expo-
nentiation to achieve advanced security properties. We model
protocols as multiset rewriting systems and security proper-
ties as first-order formulas. We analyze them using a novel
constraint-solving algorithm that supports both falsification
and verification, even in the presence of an unbounded number
of protocol sessions. The algorithm exploits the finite variant
property and builds on ideas from strand spaces and proof
normal forms. We demonstrate the scope and the effectiveness
of our algorithm on non-trivial case studies. For example,
the algorithm successfully verifies the NAXOS protocol with
respect to a symbolic version of the eCK security model.

This is the extended version of [1]. It contains additional
explanations and the proofs justifying the results in [1].

I. INTRODUCTION

Authenticated Key Exchange (AKE) protocols are widely
used components in modern network infrastructures. They
assume a Public-Key Infrastructure and use the public keys to
establish shared session keys over an untrusted channel. Re-
cent AKE protocols use Diffie-Hellman (DH) exponentiation
to achieve advanced security properties, namely secrecy and
authentication properties in the presence of adversaries who
are significantly more powerful than the classical Dolev-Yao
adversary. For example, in the eCK model [2], the adversary
may corrupt random number generators and dynamically
compromise long-term keys and session keys.

As witnessed by the numerous attacks on published
protocols, e.g. [3]–[6], designing AKE protocols is error-
prone. It is therefore desirable to formally verify them before
deployment, ideally automatically and with respect to an
unbounded number of sessions. In this paper, we use a
symbolic model of DH exponentiation to enable automatic
verification. Our model supports DH exponentiation and an
abelian group of exponents. This allows the adversary to
cancel out DH exponents using exponentiation with their
inverse. Similar to previous work on automatic symbolic
analysis [7]–[9], we do not model multiplication in the
DH group and addition of exponents.

There are no existing approaches capable of automati-
cally verifying recent AKE protocols in models combining
advanced security properties, unbounded sessions, and DH ex-
ponentiation. Existing approaches either bound the number
of sessions [8], [9], fail to model the required adversary
capabilities [7], [10]–[12], do not consider inverses in the

group of DH exponents [13]–[15], or faithfully model the
adversary, but do not support DH exponentiation [16], [17].
In this paper, we give a general approach to security protocol
verification, which is capable of automatically verifying AKE
protocols in models as described above.

Contributions: First, we give an expressive and general
security protocol model, which uses multiset rewriting to
specify protocols and adversary capabilities, a guarded frag-
ment [18] of first-order logic to specify security properties,
and equational theories to model the algebraic properties of
cryptographic operators.

Second, we give a novel constraint-solving algorithm for
the falsification and verification of security protocols specified
in our model for an unbounded number of sessions. We give a
full proof of its correctness along with proofs of all theorems
and assertions in this paper in Appendix C.

Third, we implemented our algorithm in a tool, the
TAMARIN prover [19], and validated its effectiveness on a
number of non-trivial case studies. Despite the undecidability
of the verification problem, our algorithm performs well: it
terminates in the vast majority of cases, and the times for
falsification and verification are in the range of a few seconds.
This makes TAMARIN well-suited for the automated analysis
of security protocols that use DH exponentiation to achieve
advanced security properties.

Organization: We introduce notation in Section II and
provide background on the security properties of AKE
protocols in Section III. In Section IV, we define our
protocol model. We present the theory underlying our
constraint-solving algorithm in Section V and the algorithm in
Section VI. We perform case studies in Section VII, compare
with related work in Section VIII, and conclude in Section IX.

II. NOTATIONAL PRELIMINARIES

S∗ denotes the set of sequences over S. For a sequence s,
we write si for the i-th element, ∣s∣ for the length of s, and
idx(s) = {1, . . . , ∣s∣} for the set of indices of s. We write
s⃗ to emphasize that s is a sequence. We use [] to denote
the empty sequence, [s1, . . . , sk] to denote the sequence s
where ∣s∣ = k, and s ⋅ s′ to denote the concatenation of the
sequences s and s′. S♯ denotes the set of finite multisets with
elements from S. We also use the superscript ♯ to denote the
usual operations on multisets such as ∪♯. For a sequence s,
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Figure 1. The NAXOS protocol.

mset(s) denotes the corresponding multiset and set(s) the
corresponding set. We also use set(m) for multisets m.

We write vars(t) for the set of all variables in t, and
fvars(F ) for the set of all variables that have free occurrences
in a formula F . For a function f , we write f[a↦ b] to denote
the function that maps a to b and c to f(c), for all c ≠ a.

III. AUTHENTICATED KEY EXCHANGE PROTOCOLS

We use the NAXOS protocol [2] as an example to illustrate
the constructions and goals underlying recent AKE protocols.
Figure 1 depicts the protocol. Each party x has a long-term
private key lkx and a corresponding public key pkx = glkx ,
where g is a generator of the DH group. To start a session,
the initiator I first creates a fresh nonce eskI , also known as
I’s ephemeral (private) key. He then concatenates eskI with
I’s long-term private key lkI , hashes the result using h1, and
sends gh1(eskI ,lkI) to the responder. The responder R stores
the received value in a variable X , computes a similar value
based on his own nonce eskR and long-term private key lkR,
and sends the result to the initiator, who stores the received
value in the variable Y . Finally, both parties compute a
session key (kI and kR, respectively) whose computation
includes their own long-term private keys, such that only the
intended partner can compute the same key.

Note that the messages exchanged are not authenticated,
as the recipients cannot verify that the expected long-
term key was used in the construction of the message.
The authentication is implicit and only guaranteed through
ownership of the correct key. Explicit authentication (e.g.,
the intended partner was recently alive or agrees on some
values) is commonly achieved in AKE protocols by adding
a key-confirmation step, where the parties exchange a MAC
of the exchanged messages that is keyed with (a variant of)
the computed session key.

The key motivation behind recent AKE protocols is that
they should achieve their security goals even in the presence
of very strong adversaries. For example, the NAXOS protocol
is designed to be secure in the eCK security model [2]. In this
model, as in the standard Dolev-Yao model, the adversary
has complete control over the network and can learn the long-
term private keys of all dishonest agents. However, unlike
in the Dolev-Yao model, he can additionally, under some

restrictions, learn the long-term private key of any agent.
This models (weak) Perfect Forward Secrecy (wPFS/PFS):
even if the adversary learns the long-term private keys of
all the agents, the keys of previous sessions should remain
secret [20]. Additionally, this models resilience against Key
Compromise Impersonation (KCI): even if the adversary
learns the long-term private key of an agent, he should
be unable to impersonate as anybody to this agent [6].
Moreover, the adversary can learn the session keys of certain
sessions. This models both Key Independence (KI), where
compromising one session key should not compromise other
keys, and resilience against unknown-key share attacks (UKS),
where the adversary should not be able to trick other sessions
into computing the same key. Finally, the adversary can learn
any agent’s ephemeral keys. This models resilience against
corrupted random-number generators. All these attack types
are modeled in the eCK security model.

We call security properties that consider such strong
adversaries advanced security properties. We give an example
of such a property by formalizing the security of the NAXOS
protocol in the eCK model in Section IV-C.

IV. SECURITY PROTOCOL MODEL

We model the execution of a security protocol in the
context of an adversary as a labeled transition system, whose
state consists of the adversary’s knowledge, the messages on
the network, information about freshly generated values, and
the protocol’s state. The adversary and the protocol interact
by updating network messages and freshness information.
Adversary capabilities and protocols are specified jointly as
a set of (labeled) multiset rewriting rules. Security properties
are modeled as trace properties of the transition system.

In the following, we first describe how protocols are speci-
fied and executed. Then, we define our property specification
language and illustrate our protocol model with an example.

A. Protocol Specification and Execution

To model cryptographic messages, we use an order-sorted
term algebra with the sort msg and two incomparable subsorts
fresh and pub for fresh and public names. We assume there
are two countably infinite sets FN and PN of fresh and public
names and a countably infinite set Vs of variables for each
sort s. We denote the union of these Vs by V . We write
x∶s to denote that x ∈ Vs. Our approach supports a user-
defined signature for modeling cryptographic operators other
than DH exponentiation. To simplify its presentation, we use
however a fixed signature with the function symbols

ΣDH = {enc( , ), dec( , ), h( ), ⟨ , ⟩, fst( ), snd( ),
ˆ , −1, ∗ , 1} ,

which are all of sort msg × . . . × msg → msg. The symbols
in the first line model symmetric encryption, hashing, and
pairing. Those in the second line model DH exponentiation
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(1 ) dec(enc(m,k), k) ≃m (6 ) x ∗ 1 ≃ x
(2 ) fst(⟨x, y⟩) ≃ x (7 ) x ∗ x−1 ≃ 1

(3 ) snd(⟨x, y⟩) ≃ y (8 ) (x−1)−1 ≃ x
(4 ) x ∗ (y ∗ z) ≃ (x ∗ y) ∗ z (9 ) (x ˆ y) ˆ z ≃ x ˆ (y ∗ z)
(5 ) x ∗ y ≃ y ∗ x (10 ) x ˆ 1 ≃ x

Figure 2. Equations that constitute EDH .

and inversion, multiplication, and the unit in the group of
exponents.

We abbreviate the set of well-sorted terms built over ΣDH,
PN, FN, and V as T . Cryptographic messages are modeled
by the ground terms in T , which we abbreviate as M. In
the remainder of the paper, we use g to denote a public
name that is used as a fixed generator of the DH group and
a,b,c,k to denote fresh names.

The equational theory EDH generated by the equations in
Figure 2 formalizes the semantics of the function symbols in
ΣDH. It consists of equations for decryption and projection
(1–3), exponentiation (9–10), and the theory of abelian groups
for the exponents (4–8). Equation (9) states that repeated
exponentiation in a DH group corresponds to multiplication
of the exponents.

As an example, consider the term ((g ˆ a) ˆ b) ˆ a−1, which
results from exponentiating g with a, followed by b, followed
by a inverse. This is equal to g ˆ ((a ∗ b) ∗ a−1) because
of (9) and can be further simplified to g ˆ b using (4–7).

Note that our approach supports the combination of
Equations (2–10) modeling DH exponentiation and pairing
with an arbitrary subterm-convergent rewriting theory for the
user-defined cryptographic operators (see Appendix C). A
rewriting theory R is subterm-convergent if it is convergent
and for each rule l → r ∈ R, r is either a proper subterm of l
or is ground and in normal form with respect to R. One can
therefore extend ΣDH and EDH with asymmetric encryption,
signatures, and similar operators.

Note that our equational theory does not support protocols
that perform multiplication in the DH group G. To define
such protocols, an additional function symbol × denoting
multiplication in G is required. The function symbol ∗
denotes multiplication in the group of exponents, which is a
different operation. For example, the equality (gˆa×gˆb)ˆc =
(gˆa)ˆc×(gˆb)ˆc holds in all DH groups, but does usually not
hold if we replace × by ∗. Moreover, addition of exponents
must be modeled for such protocols to avoid missing attacks.
Consider the example protocol that randomly choses two
exponents a and b, sends these exponents, receives some
exponent x, and checks if g ˆ a × g ˆ b = g ˆ x. This check
succeeds if and only if x = a + b.

1) Transition System State: We model the states of our
transition system as finite multisets of facts. We use a fixed
set of fact symbols to encode the adversary’s knowledge,
freshness information, and the messages on the network. The

remaining fact symbols are used to represent the protocol
state. Formally, we assume an unsorted signature ΣFact

partitioned into linear and persistent fact symbols. We define
the set of facts as the set F consisting of all facts F (t1, .., tk)
such that ti ∈ T and F ∈ ΣkFact. We denote the set of ground
facts by G. We say that a fact F (t1, .., tk) is linear if F is
linear and persistent if F is persistent.

Linear facts model resources that can only be consumed
once, whereas persistent facts model inexhaustible resources
that can be consumed arbitrarily often. In the rest of the
paper, we assume that ΣFact consists of an arbitrary number
of protocol-specific fact symbols to describe the protocol
state and the following special fact symbols. A persistent fact
K(m) denotes that m is known to the adversary. A linear fact
Out(m) denotes that the protocol has sent the message m,
which can be received by the adversary. A linear fact In(m)
denotes that the adversary has sent the message m, which
can be received by the protocol. A linear fact Fr(n) denotes
that the fresh name n was freshly generated.

2) Adversary, Protocol, and Freshness Rules: To specify
the possible transitions by the adversary and the honest
participants, we use labeled multiset rewriting. A labeled
multiset rewriting rule is a triple (l, a, r) with l, a, r ∈ F∗,
denoted l−−[ a ]→r. We often suppress the brackets around the
sequences l, a, and r when writing rules. For ri = l−−[ a ]→r,
we define the premises as prems(ri ) = l, the actions as
acts(ri ) = a, and the conclusions as concs(ri ) = r. We use
ginsts(R) to denote the set of ground instances of a set of
labeled multiset rewriting rules R.

There are three types of rules. A rule for fresh name gen-
eration, the message deduction rules, and the rules specifying
the protocol and the adversary’s capabilities. All fresh names
are created with the rule FRESH = ([]−−[]→Fr(x∶fresh)). This
is the only rule that produces Fr facts and we consider only
runs with unique instances of this rule, i.e., the same fresh
name is never generated twice.

We use the following set of message deduction rules.

MD = { Out(x)−−[]→K(x), K(x)−−[ K(x) ]→In(x) }
∪ { −−[]→K(x∶pub), Fr(x∶fresh)−−[]→K(x∶fresh) }
∪ { K(x1),. . . ,K(xk)−−[]→K(f(x1, . . . , xk)) ∣ f ∈ ΣkDH }

The rules in the first line allow the adversary to receive
messages from the protocol and send messages to the protocol.
The K(x) action in the second rule makes the messages sent
by the adversary observable in a protocol’s trace. We exploit
this to specify secrecy properties. The rules in the second
line allow the adversary to learn public names and freshly
generated names. The remaining rules allow the adversary
to apply functions from ΣDH to known messages.

A protocol rule is a multiset rewriting rule l−−[ a ]→r such
that (P1) it does not contain fresh names, (P2) K and Out
facts do not occur in l, (P3) K, In, and Fr facts do not occur
in r, and (P4) vars(r) ⊆ vars(l) ∪ Vpub. A protocol is a
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finite set of protocol rules. Note that our formal notion of a
protocol encompasses both the rules executed by the honest
participants and the adversary’s capabilities, like revealing
long-term keys. Condition P1 and the restriction on the
usage of Fr facts from P3, which also hold for the message
deduction rules, ensure that all fresh names originate from
instances of the FRESH rule.

3) Transition Relation: The labeled transition relation
Ð→P ⊆ G♯ × P(G) × G♯ for a protocol P is defined by the
transition rule

l−−[ a ]→r ∈EDH
ginsts(P ∪MD ∪ {FRESH})

lfacts(l) ⊆♯ S pfacts(l) ⊆ set(S)

S
set(a)ÐÐÐ→P ((S ∖♯ lfacts(l)) ∪♯ mset(r))

,

where lfacts(l) is the multiset of all linear facts in l and
pfacts(l) is the set of all persistent facts in l. This transition
rule models rewriting the state with a ground instance of a
protocol rule, a message deduction rule, or the FRESH rule.
Since we perform multiset rewriting modulo EDH , we use
∈EDH

for the rule instance. As linear facts are consumed upon
rewriting, we use multiset inclusion to check that all facts in
lfacts(l) occur sufficiently many times in S. For persistent
facts, we only check that every fact in pfacts(l) occurs in S.
To obtain the successor state, we remove the consumed linear
facts and add the generated facts. The action associated to
the transition is the set of actions of the rule instance.

A trace is a sequence of sets of ground facts denoting
the sequence of actions that happened during a protocol’s
execution. We model the executions of a security protocol P
by its set of traces defined as

traces(P ) = {[A1, . . . ,An]
∣∃S1, . . . , Sn ∈ G♯. ∅♯

A1Ð→P . . .
AnÐÐ→P Sn

∧ ∀i ≠ j. ∀x. (Si+1 ∖♯ Si) = {Fr(x)}♯ ⇒
(Sj+1 ∖♯ Sj) ≠ {Fr(x)}♯ } .

The second conjunct ensures that each instance of the FRESH
rule is used at most once in a trace. Each consumer of a Fr(n)
fact therefore obtains a different fresh name. Transitions
labeled with ∅ are silent. We therefore define the observable
trace tr of a trace tr as the subsequence of all non-silent
actions in tr .

B. Security Properties

We use two-sorted first-order-logic to specify security
properties. This logic supports quantification over both
messages and timepoints. We thus introduce the sort temp for
timepoints and write Vtemp for the set of temporal variables.

A trace atom is either false �, a term equality t1 ≈ t2, a
timepoint ordering i ⋖ j, a timepoint equality i ≐ j, or an
action f@i for a fact f and a timepoint i. A trace formula
is a first-order formula over trace atoms.

To define the semantics of trace formulas, we associate
a domain Ds with each sort s. The domain for temporal

variables is Dtemp = Q and the domains for messages are
Dmsg =M, Dfresh = FN, and Dpub = PN. We say a function
θ from V to Q ∪M is a valuation if it respects sorts, i.e.,
θ(Vs) ⊆ Ds for all sorts s. For a term t, we write tθ for the
application of the homomorphic extension of θ to t.

For an equational theory E, the satisfaction relation
(tr , θ) ⊧E ϕ between traces tr , valuations θ, and trace
formulas ϕ is defined as follows.

(tr , θ) ⊧E f@i iff θ(i) ∈ idx(tr) and fθ ∈E trθ(i)
(tr , θ) ⊧E i ⋖ j iff θ(i) < θ(j)
(tr , θ) ⊧E i ≐ j iff θ(i) = θ(j)
(tr , θ) ⊧E t1 ≈ t2 iff t1θ =E t2θ
(tr , θ) ⊧E ¬ϕ iff not (tr , θ) ⊧E ϕ

(tr , θ) ⊧E ϕ ∧ ψ iff (tr , θ) ⊧E ϕ and (tr , θ) ⊧E ψ

(tr , θ) ⊧E ∃x∶s.ϕ iff there is u ∈ Ds such that
(tr , θ[x↦ u]) ⊧E ϕ

The semantics of the remaining logical connectives and
quantifiers are defined by translation to the given fragment
as usual. Overloading notation, we write tr ⊧E ϕ if
(tr , θ) ⊧E ϕ for all θ. For a set of traces TR, we write
TR ⊧E ϕ if tr ⊧E ϕ for all tr ∈ TR. We say that a protocol
P satisfies ϕ, written P ⊧EDH

ϕ, if traces(P ) ⊧EDH
ϕ.

C. Example: Security of NAXOS in the eCK Model

We formalize the NAXOS protocol for the eCK model
using the rules in Figure 3. We include two free function
symbols h1 and h2 in ΣDH. The first rule models the
generation and registration of long-term asymmetric keys.
An exponent lkA is randomly chosen and stored as the long-
term key of an agent A. The persistent facts !Ltk(A, lkA)
and !Pk(A,g ˆ lkA) denote the association between A and
his long-term private and public keys. The public key is
additionally sent to the adversary.

In the rules modeling the initiator and responder, each
protocol thread chooses a unique ephemeral key eskx, which
we also use to identify the thread. The first initiator rule
chooses the actor I and the intended partner R, looks up
I’s long-term key, and sends the half-key hkI . The fact
Init1(eskI , I,R, lkI ,hkI) then stores the state of thread eskI
and the fact !Ephk(eskI , eskI) is added to allow the adversary
to reveal the ephemeral key eskI (the second argument) of
the thread eskI (the first argument). The second initiator
rule reads the thread’s state, looks up the public key of the
intended partner, and receives the half-key Y . The key kI is
then computed. The action Accept(eskI , I,R, kI) denotes
that the thread eskI finished with the given parameters.

To specify when two threads are intended communication
partners (“matching sessions”), we include Sid(eskI , sid)
and Match(eskI , sid′) actions. A thread s′ matches a thread s
if there exists a sid such that Sid(s′, sid) and Match(s, sid)
occur in the trace. By appropriately defining the Match
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Generate long-term keypair:
Fr(lkA)−−[]→!Ltk(A∶pub, lkA), !Pk(A,g ˆ lkA),Out(g ˆ lkA)

Initiator step 1:
Fr(eskI), !Ltk(I, lkI)
−−[]→Init1(eskI , I,R∶pub, lkI , hkI), !Ephk(eskI , eskI),Out(hkI)

where hkI = g ˆ h1(eskI , lkI)
Initiator step 2:

Init1(eskI , I,R, lkI , hkI), !Pk(R, pkR), In(Y )
−−[ Accept(eskI , I,R, kI),Sid(eskI , ⟨Init, I,R, hkI , Y ⟩)
, Match(eskI , ⟨Resp,R, I, hkI , Y ⟩) ]→ !Sessk(eskI , kI)

where kI = h2(Y ˆ lkI , pkR ˆ h1(eskI , lkI), Y ˆ h1(eskI , lkI), I,R)
Responder:

Fr(eskR), !Ltk(R, lkR), !Pk(I, pkI), In(X)
−−[ Accept(eskR,R, I, kR),Sid(eskR, ⟨Resp,R, I,X, hkR⟩)
, Match(eskR, ⟨Init, I,R,X, hkR⟩) ]→

!Sessk(eskR, kR), !Ephk(eskR, eskR),Out(g ˆ h1(eskR, lkR))
where hkR = g ˆ h1(eskR, lkR), and
kR = h2(pkI ˆ h1(eskR, lkR),X ˆ lkR,X ˆ h1(eskR, lkR), I,R)

Key Reveals for the eCK model:
!Sessk(tid, k) −−[ SesskRev(tid) ]→ Out(k)
!Ltk(A, lkA) −−[ LtkRev(A) ]→ Out(lkA)
!Ephk(tid, eskA) −−[ EphkRev(tid) ]→ Out(eskA)

Figure 3. Multiset rewriting rules formalizing NAXOS.

actions and session identifier sid, various definitions of
matching can be modeled [21].

Finally, the fact !Sessk(eskI , kI) is added to the second
initiator rule to allow revealing the session key kI . The
responder rule works analogously. The final three rules model
that, in the eCK model, the adversary can reveal any session,
long-term, or ephemeral key. We model the restrictions on
key reveals as part of the security property and thus record
all key reveals in the trace.

We formalize security in the eCK model by the formula
in Figure 4, which is a one-to-one mapping of the original
definition of eCK security given in [2]. Intuitively, the formula
states that if the adversary knows the session key of a thread
eskI , then he must have performed forbidden key reveals.
The left-hand side of the implication states that the key
k is known and the right-hand side disjunction states the
restrictions on key reveals. We describe each disjunct in the
comment above it. Further motivation and variants of these
restrictions can be found in [2], [21]. Note that the eCK
model formalizes weak Perfect Forward Secrecy (weak PFS),
as it only allows for a long-term key reveal of the intended
partner if there is a matching session. To obtain a variant of
eCK formalizing PFS, we can replace the last line with

∨ (∃i5.LtkRev(B)@i5 ∧ i5⋖i1))) ).

This allows the adversary to reveal the long-term key of the
intended partner after the test thread is finished or if there is

∀i1 i2 sAB k. (Accept(s,A,B, k)@i1 ∧ K(k)@i2)⇒
// If the session key of the test thread s is known, then
// s must be ”not clean”. Hence either there is a
// session key reveal for s,

((∃i3.SesskRev(s)@i3)

// or a session key reveal for a matching session,
∨ (∃s′i3 i4 sid . (Sid(s′, sid)@i3 ∧Match(s, sid)@i4)
∧ (∃i5.SesskRev(s′)@i5))

// or if a matching session exists,

∨ (∃s′i3 i4 sid . (Sid(s′, sid)@i3 ∧Match(s, sid)@i4)

// both lkA and eskA, or both lkB and eskB are revealed,
∧ ((∃i5 i6.LtkRev(A)@i5 ∧ EphkRev(s)@i6)

∨ (∃i5 i6.LtkRev(B)@i5 ∧ EphkRev(s′)@i6)))

// or if no matching session exists,

∨ (¬(∃s′i3 i4 sid . (Sid(s′, sid)@i3 ∧Match(s, sid)@i4))

// either both lkA and eskA, or lkB are revealed.
∧ ((∃i5 i6.LtkRev(A)@i5 ∧ EphkRev(s)@i6)

∨ (∃i5.LtkRev(B)@i5))) )

Figure 4. eCK security definition.

a matching session. The NAXOS protocol does not satisfy
this property, as reported in Table I in SectionVII.

Note that some protocols require modeling inequality
conditions, e.g., the TS1-2004 [22] protocol, which assumes
that an agent never executes a session with himself. We
model inequality conditions in two steps. First, we include
Neq(s, t) facts in the actions of rules that require the terms
s and t to be unequal. Second, we replace the considered
security property ϕ with (¬(∃i x.Neq(x,x)@i)) ⇒ ϕ to
restrict the analysis to traces where all inequality conditions
hold. This filtering construction also works for enforcing other
restrictions on traces, e.g., the uniqueness of certain actions.

V. NORMAL DEPENDENCY GRAPHS

For symbolic attack-search algorithms, there are several
drawbacks to the multiset rewriting semantics given in the
previous section. First, incrementally constructing attacks
is difficult with (action-)traces, as they contain neither the
history of past states nor the causal dependencies between
steps. Second, symbolic reasoning modulo EDH is difficult
because EDH contains cancellation equations. For example,
if the adversary knows t = na ∗ x for a nonce na, we cannot
conclude that na has been used in the construction of t, as x
could be equal to na−1. Third, the message deduction rules
allow for redundant steps such as first encrypting a cleartext
and then decrypting the resulting ciphertext. For search
algorithms, it is useful to impose normal-form conditions on
message deduction to avoid exploring such redundant steps.

We take the following approach. First, we define depen-
dency graphs. They consist of the sequence of rewriting
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rule instances corresponding to a protocol execution and
their causal dependencies, similar to strand spaces [23].
Afterwards, we show that we can use dependency graphs
modulo AC , an equational theory without cancellation
equations, instead of dependency graphs modulo EDH .
Finally, we define normal message deductions and the
corresponding normal dependency graphs. We also show
that normal dependency graphs are weakly trace equivalent
to the multiset rewriting semantics.

A. Dependency Graphs
We use dependency graphs to represent protocol executions

together with their causal dependencies. A dependency
graph consists of nodes labeled with rule instances and
dependencies between the nodes. We first present an example
of a dependency graph and then give its formal definition.

Example 1 (Dependency Graph). Consider the protocol

P = { [Fr(x),Fr(k)]−−[]→[St(x,k),Out(enc(x,k)),Key(k)]
, [St(x, k), In(⟨x,x⟩)]−−[ Fin(x, k) ]→[]
, [Key(k)]−−[ Rev(k) ]→[Out(k)] } .

Figure 5 shows a dependency graph for an execution of
P . We use inference rule notation with the actions on the
right for rule instances. Nodes 1 and 2 are rule instances that
create fresh names. Node 3 is an instance of the first protocol
rule. Node 4 is an instance of the key reveal rule. Nodes 5–9
are instances of message deduction rules and denote that
the adversary receives a ciphertext and its key, decrypts
the ciphertext, pairs the resulting cleartext with itself, and
sends the result to an instance of the second protocol rule,
Node 10. The edges denote causal dependencies: an edge
from a conclusion of node i to a premise of node j denotes
that the corresponding fact is generated by i and consumed
by j. Since this is a dependency graph modulo EDH , it is
sufficient that each pair of generated and consumed facts is
equal modulo EDH .

Formally, let E be an equational theory and R be a set of
multiset rewriting rules. We say that dg = (I,D) is a depen-
dency graph modulo E for R if I ∈ (ginsts(R∪{FRESH}))∗,
D ⊆ N2 ×N2, and dg satisfies the conditions DG1–4 listed
below. To state these conditions, we introduce the following
definitions. We call idx(I) the nodes and D the edges of
dg. We write (i, u) ↣ (j, v) for the edge ((i, u), (j, v)).
Let I = [l1−−[ a1 ]→r1, . . . , ln−−[ an ]→rn]. The trace of dg is
trace(dg) = [set(a1), . . . , set(an)]. A conclusion of dg is a
pair (i, u) such that i is a node of dg and u ∈ idx(ri). The
corresponding conclusion fact is (ri)u. A premise of dg is
a pair (i, u) such that i is a node of dg and u ∈ idx(li). The
corresponding premise fact is (li)u. A conclusion or premise
is linear if its fact is linear.
DG1 For every edge (i, u)↣ (j, v) ∈D, it holds that i < j

and the conclusion fact of (i, u) is equal modulo E to
the premise fact of (j, v).

3 :
Fr(a) Fr(k)

St(a, k) Out(enc(a, k))) Key(k)

7 :
K(enc(a, k)) K(k)

K(dec(enc(a, k), k))

5 :
Out(enc(a, k))

K(enc(a, k))
6 :

Out(k)

K(k)

1 :
Fr(a)

2 :
Fr(k)

9 :
K(ha, ai)
In(ha, ai) [K(ha, ai)]

10 :
St(a, k) In(ha, ai)

[Fin(a, k)]

8 :
K(a) K(a)

K(ha, ai)

4 :
Key(k)

Out(k)
[Rev(k)]]

Figure 5. Dependency graph modulo EDH .

DG2 Every premise of dg has exactly one incoming edge.
DG3 Every linear conclusion of dg has at most one outgoing

edge.
DG4 The FRESH rule instances in I are unique.
We denote the set of all dependency graphs modulo E for
R by dgraphsE(R).

Note that, for all protocols P , the multiset rewriting
semantics given in Section IV and the dependency graphs
modulo EDH for P ∪MD have the same set of traces, i.e.,
traces(P ) =EDH

{trace(dg) ∣dg ∈ dgraphsEDH
(P ∪MD)}.

B. Dependency Graphs modulo AC

We now switch to a semantics based on dependency graphs
modulo AC . We use standard notions from order-sorted
rewriting [24] and proceed in two steps.

First, we define AC as the equational theory generated
by Equations (4–5) from Figure 2 and DH as the rewriting
system obtained by orienting Equations (1–3,9–10) from
Figure 2 and all equations from Figure 6 from left to right.
DH ⊎AC is an equational presentation of EDH and DH is
AC -convergent and AC -coherent. We can therefore define
t↓DH as the normal form of t with respect to DH,AC -
rewriting and have t =EDH

s iff t↓DH =AC s↓DH . We say
that t is ↓DH -normal if t =AC t↓DH . We say a dependency
graph dg = (I,D) is ↓DH -normal if all rule instances in I
are ↓DH -normal.

Second, EDH has the finite variant property [25] for this
presentation, which allows us to perform symbolic reasoning
about normalization. More precisely, for all terms t, there
is a finite set of substitutions {τ1, . . . , τk} such that for all
substitutions σ, there is an i ∈ {1, . . . , k} and a substitution σ′

with (tσ)↓DH =AC ((tτi)↓DH )σ′ and (xσ)↓DH =AC xτiσ
′
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(1 ) (x−1∗y)−1 ≃ x∗y−1 (6 ) 1−1 ≃ 1

(2 ) x−1∗y−1 ≃ (x∗y)−1 (7 ) x∗1 ≃ x
(3 ) x∗(x∗y)−1 ≃ y−1 (8 ) (x−1)−1 ≃ x
(4 ) x−1∗(y−1∗z) ≃ (x∗y)−1∗z (9 ) x∗(x−1∗y) ≃ y
(5 ) (x∗y)−1∗(y∗z) ≃ x−1∗z (10 ) x∗x−1 ≃ 1

Figure 6. Lankford’s presentation of the abelian group axioms

for all x ∈ vars(t). We call {( tτi↓DH , τi) ∣ 1 ≤ i ≤ k} a
complete set of DH,AC -variants of t. For a given term t,
we use folding variant narrowing [24] to compute such a set,
which we denote by ⌈t⌉DH . Overloading notation, we also
denote {s ∣ (s, τ) ∈ ⌈t⌉DH } by ⌈t⌉DH .

It is straightforward to extend these notions to multiset
rewriting rules by considering rules as terms and the required
new function symbols as free. We can then show that
dgraphsEDH

(R)↓DH ⊆AC dgraphsAC (⌈R⌉DH ) for all sets
of multiset rewriting rules R. If we restrict the right hand
side to ↓DH -normal dependency graphs, then the two sets
are equal modulo AC .

Example 2. To normalize the graph dg = (I,D) in
Figure 5 with respect to ↓DH , it suffices to replace I7
with ri = K(enc(a,k)),K(k)−−[]→K(a), calling the result
dg′. Since ri is not an instance of the decryption rule
rdec = K(x),K(y)−−[]→K(dec(x, y)) or any other rule in
P ∪ MD, dg′ is not in dgraphsAC (P ∪ MD). However, ri
is an instance of K(enc(x, y)),K(y)−−[]→K(x), which is a
DH,AC -variant of rdec and therefore in ⌈MD⌉DH . Hence,
dg′ ∈ dgraphsAC (⌈P ∪MD⌉DH ).

C. Normal Dependency Graphs

We first define the class of ∗-restricted protocols, which
do not multiply exponents. We then define rules for normal
message deduction and the corresponding normal dependency
graphs, which are weakly trace equivalent to the multiset
rewriting semantics for ∗-restricted protocols.

1) ∗-restricted Protocols: The following restriction en-
sures that protocols do not multiply exponents and do
not introduce products by other means. A protocol P is
∗-restricted if, for each of its rules l−−[ a ]→r, (a) l does not
contain the function symbols ∗, ˆ, −1, fst, snd, and dec, and
(b) r does not contain the function symbol ∗.

In general, condition (a) prevents protocol rules from
pattern matching on reducible function symbols. Condition (b)
prevents protocols from directly using multiplication, al-
though repeated exponentiation is still allowed. Note that
these restrictions are similar to those of previous work such
as [7], [8] and are not a restriction in practice. Protocols
that use multiplication in the group of exponents can usually
be specified by using repeated exponentiation. Moreover,
protocols that use multiplication in the DH group, such as

MQV [26], cannot be specified anyway since ∗ denotes
multiplication in the group of exponents.

For ∗-restricted protocols, products that occur in positions
that can be extracted by the adversary can always be
constructed by the adversary himself from their components.

2) Normal Message Deduction: Message deduction steps
in dependency graphs modulo AC use rules from ⌈MD⌉DH .
These rules still allow redundant steps. We now eliminate
some of them by tagging the rules to limit their applicability.

We first partition ⌈MD⌉DH into five subsets: communica-
tion rules for sending and receiving messages, multiplication
rules consisting of all DH,AC -variants of the rule for
multiplication, construction rules that apply a function symbol
to arguments, deconstruction rules that extract a subterm from
an argument, and the remaining exponentiation rules, which
are all DH,AC -variants of the rule for exponentiation and
are neither construction nor deconstruction rules.

We use tags to forbid two types of redundancies. First,
we forbid using a deconstruction rule to deconstruct the
result of a construction rule. This is analogous to restrictions
for normal natural deduction proofs, adapted to the setting
of message deduction [27]. Second, we forbid repeated
exponentiation, which can always be replaced by a single
exponentiation with the product of all exponents. In particular,
we use the deconstruction tags ↓ and ↑ and the exponentiation
tags exp and noexp. We use ↓ to tag K-facts where
deconstruction is allowed and ↑ where deconstruction is
forbidden. We use exp to tag K-facts that can be used as the
base of an exponentiation and noexp where this is forbidden.

We obtain the normal message deduction rules ND
shown in Figure 9 as follows. First, we add the COERCE
rule to switch from message deconstruction to message
construction, preserving the exponentiation tag. Second,
we replace the multiplication rules by l-ary construction
rules for multiplication. For ∗-restricted protocols, these
rules are sufficient to reason about products. Third, we use
exponentiation tags as follows. The construction rule for
exponentiation, the deconstruction rules for exponentiation,
and the exponentiation rules use exp for the first premise
(the base), a variable for the second premise, and noexp
for the conclusion. The remaining rules use variables for
the premises and exp for the conclusion. Finally, we use
deconstruction tags as follows. We use ↑ for the conclusion of
construction rules and ↓ for the first premise of deconstruction
and exponentiation rules. This ensures that a deconstruction
or exponentiation rule can never use the conclusion of a
construction rule as its first premise. For the remaining
premises of rules, we use ↑. For the remaining conclusions of
rules, we use ↓. Note that all conclusions of exponentiation
rules, including the ones that we do not show, are of the form
K↓noexp(t ˆ s) and can therefore only be used by COERCE.

Example 3. Figure 7 shows five message deduction sub-
graphs. In (a), the adversary decrypts a message that he earlier
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i :
K(g ˆ a) K(a�1 ⇤ b)

K(g ˆ b)

j :
K(g ˆ b) K(b�1 ⇤ c)

K(g ˆ c)

i :
K#

exp(g ˆ a) K"
e1

(a�1 ⇤ b)

K#
noexp(g ˆ b)

j :
K#

exp(g ˆ b) K"
e2

(b�1 ⇤ c)

K#
noexp(g ˆ c)

noexp-conclusion
to exp-premise

j :
K#

exp(g ˆ a) K"
exp(a

�1 ⇤ c)

K#
noexp(g ˆ c)

k :
K"

e1
(a�1 ⇤ b) K"

e2
(b�1 ⇤ c)

K"
exp(a

�1 ⇤ c)

(c) (d)

(e)

i :
K(a) K(k)

K(enc(a, k))

j :
K(enc(a, k)) K(k)

K(a)

i :
K"

e1
(a) K"

e2
(k)

K"
exp(enc(a, k))

j :
K#

exp(enc(a, k)) K"
e3

(k)

K#
exp(a)

"-conclusion
to #-premise

(b)(a)

Figure 7. Message deduction subgraphs for encryption. We use ↛ for
edges that are invalid because the source and target are not equal. We use
i, j, k ∈ N and the exponentiation tags e1, e2, and e3.

encrypted himself. Instead of performing these deductions,
the adversary can directly use the conclusion K(a) that is
used by the encryption. The deduction from (a) is not possible
with the normal message deduction rules ND because the
↑-tags and ↓-tags prevent applying a deconstruction rule to
the conclusion of a construction rule, as depicted in (b). In
(c), the adversary performs a redundant step that involves
repeated exponentiation. Note that an unbounded number of
steps that add a new exponent and remove the previously
added exponent can be inserted inbetween the two rules. This
deduction is impossible with the normal message deduction
rules because a conclusion with a noexp-tag cannot be
used with a premise that requires an exp-tag, as depicted
in (e). We can replace the repeated exponentiation with one
multiplication and one exponentiation as depicted in (d).

3) Normal Dependency Graphs: We now define normal
dependency graphs. They use the normal message deduction
rules and enforce further normal-form conditions. To state
the conditions, we define the input components of a term t
as inp(t), such that inp(t−1) = inp(t), inp(⟨t1, t2⟩) =
inp(t1) ∪ inp(t2), inp(t1 ∗ t2) = inp(t1) ∪ inp(t2), and
inp(t) = {t} otherwise. Intuitively, inp(t) consists of the
maximal subterms of t that are not products, pairs, or inverses.

Formally, a normal dependency graph for a protocol P is
a dependency graph dg such that dg ∈ dgraphsAC (⌈P ⌉DH ∪
ND) and the following conditions are satisfied.

N1 The dependency graph dg is ↓DH -normal.
N2 No instance of COERCE deduces a pair or an inverse.
N3 There is no multiplication rule that has a premise fact

of the form K↑e(t ∗ s).

6 :
Out(k)

K#
exp(k)

8 :
K#

exp(enc(a, k)) K"
exp(k)

K#
exp(a)

11 :
K"

exp(ha, ai)
In(ha, ai) [K(ha, ai)]

5 :
Out(enc(a, k))

K#
exp(enc(a, k))

10 :
K"

exp(a) K"
exp(a)

K"
exp(ha, ai)

9 :
K#

exp(a)

K"
exp(a)

5 :
Out(enc(a, k))

K(enc(a, k))

6 :
Out(k)

K(k)

(a)

9 :
K(ha, ai)
In(ha, ai) [K(ha, ai)]

7 :
K(enc(a, k)) K(k)

K(a)

8 :
K(a) K(a)

K(ha, ai)

7 :
K#

exp(k)

K"
exp(k)

(b)

Figure 8. Examples of message deduction subgraphs of (a) a dependency
graph modulo AC and (b) a normal dependency graph.

N4 All conclusion facts Kde(t ∗ s) are conclusions of a
multiplication rule.

N5 If there are two conclusions c and c′ with conclusion facts
Kde(m) and Kde′(m′) such that m =AC m′, then c = c′.

N6 If there is a conclusion (i,1) with fact K↓e(m) and a
conclusion (j,1) with fact K↑e′(m′) such that m =AC

m′, then i < j and j is an instance of COERCE or the
construction rule for pairing or the one for inversion.

N7 For all nodes K↓exp(s1),K↑e(t1)−−[]→K↓noexp(s2 ˆ t2) such
that s2 is of sort pub, inp(t2) /⊆ inp(t1).

We denote the set of all normal dependency graphs of P by
ndgraphs(P ).

N1 ensures that all rule instances are ↓DH -normal. N2 en-
sures that pairs and inverses are always completely decon-
structed. N3 and N4 formalize that the adversary constructs
all products directly by multiplying their components. This
does not restrict the adversary since we limit ourselves to
∗-restricted protocols. N5 and N6 ensure a restricted form of
message uniqueness. N7 forbids instances of exponentiation
rules that can be replaced by instances of the construction
rule for exponentiation where the base is a public name.

Note that normal dependency graphs allow exactly the
same executions as our multiset rewriting semantics.

Lemma 1. For all ∗-restricted protocols P ,

traces(P )×ÖDH =AC {trace(dg) ∣dg ∈ ndgraphs(P )} .

Example 4. Figure 8 shows two message deduction sub-
graphs. Subfigure (a) shows the message deduction subgraph
of a dependency graph modulo AC and (b) shows the
message deduction subgraph of the corresponding normal
dependency graph. We obtain (b) from (a) by renumbering
the nodes and adding the required tags and COERCE nodes.

8



Coerce rule: COERCE
K↓e(x)
K↑e(x)

Communication rules: IRECV
Out(x)
K↓exp(x)

ISEND
K↑e(x)
In(x)

[K(x)]

Construction rules:

K↑exp(x) K↑e(y)
K↑noexp(x ˆ y) K↑exp(x∶pub)

Fr(x∶fresh)
K↑exp(x∶fresh)

K↑e(x)
K↑exp(x−1) K↑exp(1)

K↑e1(x) K↑e2(y)
K↑exp(enc(x, y))

K↑e1(x) K↑e2(y)
K↑exp(dec(x, y))

K↑e(x)
K↑exp(h(x))

K↑e(x)
K↑exp(fst(x))

K↑e(x)
K↑exp(snd(x))

K↑e1(x) K↑e2(y)
K↑exp(⟨x, y⟩)

K↑e1(x1) . . . K↑en(xn) K↑en+1(xn+1) . . . K↑el(xl)
K↑exp((x1 ∗ . . . ∗ xn) ∗ (xn+1 ∗ . . . ∗ xl)−1)

Deconstruction rules:

K↓exp(x ˆ y) K↑e(y−1)
K↓noexp(x)

K↓exp(x ˆ y−1) K↑e(y)
K↓noexp(x)

K↓exp(x ˆ (y ∗ z−1)) K↑e(y−1 ∗ z)
K↓noexp(x)

K↓e(⟨x, y⟩)
K↓exp(x)

K↓e(⟨x, y⟩)
K↓exp(y)

K↓e(x−1)
K↓exp(x)

K↓e1(enc(x, y)) K↑e2(y)
K↓exp(x)

Exponentiation rules: K↓exp(x ˆ y) K↑e(z)
K↓noexp(x ˆ (y ∗ z))

K↓exp(x ˆ y) K↑e(y−1 ∗ z)
K↓noexp(x ˆ z)

⋯
K↓exp(x ˆ (y ∗ z−1)) K↑e(a ∗ b−1)
K↓noexp(x ˆ (y ∗ a ∗ (z ∗ b)−1))

Figure 9. Normal message deduction rules ND. Rules containing variables e or ei denote all variants where these are replaced by noexp or exp. Rules
containing n and l denote all variants for n ≥ 1 and l ≥ 2. There are 42 exponentiation rules computed from the DH,AC -variants of the exponentiation rule.

Example 5. Consider the exponentiation-construction node
i ∶ K↓exp(gˆa),K↑exp(a−1∗b)−−[]→K↓noexp(gˆb). The conclusion
of i either has no outgoing edge or a single edge to a
COERCE node j. In the first case, the node i can be removed.
In the second case, the nodes i and j can be replaced
by j ∶ K↑exp(g),K

↑

exp(b)−−[]→K↑noexp(g ˆ b), keeping all the
outgoing edges of j. This replacement is possible because
g is deducible and conditions N4 and N3 ensure that b is
deducible whenever a−1 ∗ b is.

4) Properties of Normal Dependency Graphs: We prove
two properties of normal dependency graphs that are crucial
for our search algorithm. The first property states that every
K↓e(t)-premise is deduced using a chain of deconstruction
rules from a received message. We use here the extended
set of deconstruction rules NDdestr that consists of the
deconstruction and exponentiation rules from Figure 9. To
define the second property, we partition the construction
rules into the implicit construction rules NDc-impl consisting
of the pair, inversion, and multiplication construction rules
and the explicit construction rules NDc-expl consisting of the
remaining construction rules and the COERCE rule. Since
all messages that are products, pairs, and inverses must be
constructed with implicit construction rules, we can show
that if a K↑e(t) conclusion was deduced, then every message
in inp(t) must have been previously deduced.

Let dg = (I,D) be a normal dependency graph for P . Its
deconstruction chain relation⇢dg is the smallest relation such
that c⇢dg p if c is a K↓-conclusion in dg and (a) c↣ p ∈D

or (b) there is a premise (j, u) such that c↣ (j, u) ∈D and
(j,1) ⇢dg p. Our search algorithm exploits the following
lemma to reason about the possible origins of K↓-premises.

Lemma 2 (Deconstruction Chain). For every premise p with
fact K↓e(t) of dg, there is a node i in dg such that Ii ∈
ginsts(IRECV) and (i,1)⇢dg p.

The implicit construction dependency relation ↠dg of dg
is the smallest relation such that c↠dg p if there is a premise
(j, u) with Ij ∈ ginsts(NDc-impl) such that (a) c↣(j, u) ∈D
and (j,1)↣p ∈D or (b) c↠dg (j, u) and (j,1)↣p ∈D. Our
algorithm uses the following lemma to keep the construction
of pairs, inverses, and products implicit in the search.

Lemma 3 (Implicit Construction). For every premise p in
dg with fact K↑e(t) and every message m ∈AC inp(t) with
m ≠AC t, there is a conclusion (i,1) in dg with fact K↑e′(m′)
such that Ii ∈ ginsts(NDc-expl), m′ =AC m, and (i,1)↠dg p.

Example 6. For the normal message deduction subgraph
dg in Figure 8b, (5,1) ⇢dg (9,1), (8,1) ⇢dg (9,1), and
(6,1) ⇢dg (7,1), but not (6,1) ⇢dg (9,1) because (8,2)
is not a K↓-premise. We have (9,1) ↠dg (11,1), but not
(10,1)↠dg (11,1) because ↠dg requires at least one inner
implicit construction node.

VI. AUTOMATED PROTOCOL ANALYSIS

In this section, we give an algorithm for determining
whether P ⊧EDH

ϕ for a ∗-restricted protocol P and a
guarded trace property ϕ. Guarded trace properties are an
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Trace formula reduction rules:

S≈ ∶ Γ ↝P ∥σ∈unifyAC (t1,t2)
(Γσ) if (t1 ≈ t2) ∈ Γ and t1 ≠AC t2

S≐ ∶ Γ ↝P Γ{i/j} if (i ≐ j) ∈ Γ and i ≠ j
S@ ∶ Γ ↝P ∥ri ∈⌈P ⌉DH∪{ISEND} ∥f ′∈acts(ri )(i ∶ ri , f ≈ f ′, Γ) if (f@i) ∈ Γ and (f@i) ∉AC as(Γ)
S� ∶ Γ ↝P � if � ∈ Γ

S¬,≈ ∶ Γ ↝P � if ¬(t ≈ t) ∈AC Γ

S¬,≐ ∶ Γ ↝P � if ¬(i ≐ i) ∈ Γ

S¬,@ ∶ Γ ↝P � if ¬(f@i) ∈ Γ and (f@i) ∈ as(Γ)
S¬,⋖ ∶ Γ ↝P (i ⋖ j, Γ) ∥ (Γ{i/j}) if ¬(j ⋖ i) ∈ Γ and neither i ⋖Γ j nor i = j
S∨ ∶ Γ ↝P (φ1, Γ) ∥ (φ2, Γ) if (φ1 ∨ φ2) ∈AC Γ and {φ1, φ2} ∩AC Γ = ∅
S∧ ∶ Γ ↝P (φ1, φ2, Γ) if (φ1 ∧ φ2) ∈AC Γ and not {φ1, φ2} ⊆AC Γ

S∃ ∶ Γ ↝P (φ{y/x}, Γ) if (∃x∶s. φ) ∈ Γ, φ{w/x} ∉AC Γ for every term w of sort s, and y∶s fresh

S∀ ∶ Γ ↝P (ψσ, Γ) if (∀x⃗.¬(f@i) ∨ ψ) ∈ Γ, dom(σ) = set(x⃗), (f@i)σ ∈AC as(Γ), and ψσ ∉AC Γ

Graph constraint reduction rules:

Ulbl ∶ Γ ↝P (ri ≈ ri ′, Γ) if {i ∶ ri , i ∶ ri ′} ⊆ Γ and ri ≠AC ri ′

DG11 ∶ Γ ↝P � if i ⋖Γ i

DG12 ∶ Γ ↝P (f ≈ f ′, Γ) if c↣ p ∈ Γ, (c, f) ∈ cs(Γ), (p, f ′) ∈ ps(Γ), and f ≠AC f ′

DG21 ∶ Γ ↝P (if u = v then Γ{i/j} else �) if {(i, v)↣ p, (j, u)↣ p} ⊆ Γ and i ≠ j
DG22,P ∶ Γ ↝P ∥ri ∈⌈P ⌉DH∪{ISEND,FRESH} ∥u∈idx(concs(ri ))(i ∶ ri , (i, u)↣ p, Γ)

if p is an open f -premise in Γ, f is not a K↑- or K↓-fact, and i fresh

DG3 ∶ Γ ↝P (if u = v then Γ{i/j} else �) if {c↣ (i, v), c↣ (j, u)} ⊆ Γ, c linear in Γ, and i ≠ j,
DG4 ∶ Γ ↝P Γ{i/j} if {i ∶ −−[]→Fr(m), j ∶ −−[]→Fr(m)} ⊆AC Γ and i ≠ j
N1 ∶ Γ ↝P � if (i ∶ ri ) ∈ Γ and ri not ↓DH -normal

N5,6 ∶ Γ ↝P Γ{i/j} if {((i,1),Kde(t)), ((j,1),K
d′

e′ (t))} ⊆AC cs(Γ), i ≠ j, and

d = d′ or {i, j} ∩ {k ∣∃ri ∈ insts({PAIR↑, INV↑,COERCE}). (k ∶ ri ) ∈ Γ} = ∅
N6 ∶ Γ ↝P (i ⋖ j, Γ) if ((j, v),K↑e′(t)) ∈ ps(Γ), m ∈AC inp(t), ((i, u),K↓e(m)) ∈ cs(Γ), and not i ⋖Γ j

N7 ∶ Γ ↝P � if (i ∶ K↓exp(s1),K↑e(t1)−−[]→K↓noexp(s2 ˆ t2)) ∈ Γ, s2 is of sort pub, and inp(t2) ⊆ inp(t1)
Message deduction constraint reduction rules:

DG22,↑i ∶ Γ ↝P ∥
(l−[]→K↑e(t))∈NDc-expl (i ∶ (l−−[]→K↑e(t)), t ≈m, (i,1)↠ p, Γ)

if p is an open implicit m-construction in Γ, m non-trivial, and i fresh

DG22,↑e ∶ Γ ↝P ∥ri ∈NDc-expl (i ∶ ri , (i,1)↣ p, Γ)
if p is an open K↑e(m)-premise in Γ, {m} = inp(m), m non-trivial, and i fresh

DG22,↓ ∶ Γ ↝P (i ∶ Out(y)−−[]→K↓exp(y), (i,1)⇢ p, Γ) if p is an open K↓e(m)-premise in Γ and y, i fresh

DG2⇢ ∶ (c⇢p,Γ) ↝P (c↣p,Γ) ∥ ∥ri ∈NDdestr (i ∶ ri , c↣ (i,1), (i,1)⇢p, Γ)
if (c,K↓e(m)) ∈ cs(Γ), m ∉ Vmsg, and i fresh

We assume that the multiset rewriting rules in ⌈P ⌉DH , NDc-expl, and NDdestr are renamed apart from Γ. We write Γ{a/b} for
the substitution of all occurrences of b with a in Γ. We write Γ↝P Γ1 ∥ . . . ∥ Γn for Γ↝P {Γ1, . . . ,Γn}, which denotes an
n-fold case distinction. We overload notation and write � for the empty set of constraint systems.

Figure 10. Rules defining the constraint-reduction relation ↝P , explained in Sections VI-C and VI-D.
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j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

j5 :
Fr(x)

K"(x)

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j6 :
Fr(x : fresh)

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

j7 :
Fr(x0) Fr(k0)

St(x0, k0) Out(enc(x0, k0)) Key(k0)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

j5 :
K#(x)

K"(x)

j9 :
Fr(k0 : fresh)

j8 :
Fr(x0 : fresh)

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

j5 :
K#(x)

K"(x)

j6 :
. . .

K#(enc(x, k0))

j7 :
Fr(x) Fr(k0)

St(x, k0) Out(enc(x, k0)) Key(k0)

j8 :
Fr(x : fresh)

j9 :
Fr(k0 : fresh)

j10 :
K#(enc(x, k0)) K"

e(k
0)

K#(x)

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

j5 :
K#(x)

K"(x)

j10 :
K#(enc(x, k)) K"

e(k)

K#(x)

j6 :
. . .

K#(enc(x, k))

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)
In(hx, xi) [K(hx, xi)]

j6 :
. . .

K#(enc(x0, k0))

j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

j5 :
K#(x)

K"(x)

j6 :
Out(y)

K#(y)

) j2 = j6
) j1 = j5
) contradiction

) j2 = j8
) j1 = j7
) k = k0, j2 = j9

1.1.2.1.1.1.1 (in Figure 13)

case 1 case 1

ca
se

2

ca
se

2

1.1.2.1.1

1.1.2.1.1.1

1.1.1 1.1.2.1

1.1.2

1.1

1

1
.1

.2
.1

(in
F
igu

re
16)

Figure 11. Constraint systems constructed by our algorithm, as explained in Example 7, when verifying ∀x k i.Fin(x, k)@i⇒ ∃j.Rev(k)@j for the
protocol from Example 1. The large gray arrows denote constraint-reduction steps and “. . .” at either end of an edge refers to the fact at the other end. In
every constraint system, variables with the same name are of the same sort and variables that have no sort annotation are of sort msg.
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expressive subset of trace formulas. Our algorithm uses
constraint solving to perform a complete search for counter-
examples to P ⊧EDH

ϕ, i.e., it attempts a proof by contra-
diction. This problem is undecidable and our algorithm does
not always terminate. Nevertheless, it often finds a counter-
example (an attack) or succeeds in unbounded verification.

In the following, we define guarded trace properties
and constraints. Afterwards we give our constraint-solving
algorithm and several examples.

A. Guarded Trace Properties

In the remainder of this section, let f range over facts
and i, j over temporal variables. A trace formula ϕ is in
negation normal form if it is built such that negation is only
applied to trace atoms and all other logical connectives are
∧, ∨, ∀, or ∃. Such a trace formula ϕ is a guarded trace
formula if all its quantifiers are of the form ∃x⃗.(f@i)∧ψ or
∀x⃗.¬(f@i) ∨ ψ for an action f@i, a guarded trace formula
ψ, and x ∈ vars(f@i) ∩ (Vmsg ∪ Vtemp) for every x ∈ x⃗. A
guarded trace formula ϕ is a guarded trace property if it is
closed and t ∈ V ∪ PN holds for all terms t occurring in ϕ.

Note that we restrict both universal and existential quan-
tification and, as a result, the set of guarded trace properties
is closed under negation. This, together with the support
for quantifier alternations and the explicit comparison of
timepoints, makes guarded trace properties well-suited for
specifying advanced security properties. In our case studies,
it was possible to automatically convert the specified security
properties, including the eCK model from Figure 4, to
guarded trace properties. The conversion first rewrites the
given formula to negation normal form and pushes quantifiers
inward. Then, it replaces each body ϕ of a universal quantifier
that is not a disjunction with ϕ ∨ �. The rewriting for
existential quantifiers is analogous.

All terms in a guarded trace property must be either
variables or public names. This is not a limitation in practice
since the terms required to express a security property can be
added to the actions of a protocol’s rewriting rules. Together
with the requirement of guarding all quantified variables,
this ensures that guarded trace properties are invariant under
↓DH -normalization of traces. Combined with Lemma 1, this
allows us to switch from verification in a multiset rewriting
semantics modulo EDH to verification in a dependency graph
semantics modulo AC .

Theorem 1. For every ∗-restricted protocol P and every
guarded trace property ϕ,

P ⊧EDH
ϕ iff {trace(dg) ∣ dg ∈ ndgraphs(P )} ⊧AC ϕ .

B. Syntax and Semantics of Constraints

In the remainder of this section, let ri range over multiset
rewriting rule instances, u and v over natural numbers, and
ϕ over guarded trace formulas. A graph constraint is either
a node i ∶ ri , an edge (i, u)↣ (j, v), a deconstruction chain

(i, u) ⇢ (j, v), or an implicit construction (i, u) ↠ (j, v).
A constraint is a graph constraint or a guarded trace formula.

A structure is a tuple (dg, θ) of a dependency graph dg =
(I,D) and a valuation θ. We denote the application of the
homomorphic extension of θ to a rule instance ri by ri θ.
We define when the structure (dg, θ) satisfies a constraint γ,
written (dg, θ)⊫ γ, as follows.

(dg, θ)⊫ i ∶ ri iff θ(i) ∈ idx(I) and ri θ =AC Iθ(i)

(dg, θ)⊫ (i, u)↣ (j, v) iff (θ(i), u)↣ (θ(j), v) ∈D
(dg, θ)⊫ (i, u)⇢ (j, v) iff (θ(i), u)⇢dg (θ(j), v)
(dg, θ)⊫ (i, u)↠(j, v) iff (θ(i), u)↠dg (θ(j), v)
(dg, θ)⊫ ϕ iff (trace(dg), θ) ⊧AC ϕ

A constraint system Γ is a finite set of constraints.
The structure (dg, θ) satisfies Γ, written (dg, θ) ⊫ Γ, if
(dg, θ) satisfies each constraint in Γ. We say that (dg, θ)
is a P -model of Γ, if dg is a normal dependency graph
for P and (dg, θ) ⊫ Γ. A P -solution of Γ is a normal
dependency graph dg for P such that there is a valuation θ
with (dg, θ)⊫ Γ. Note that the free variables of a constraint
system are therefore existentially quantified.

C. Constraint-Solving Algorithm

Let P be a ∗-restricted protocol and ϕ a guarded trace
property. Exploiting Theorem 1, our algorithm searches for
a counter-example to P ⊧EDH

ϕ by trying to construct a P -
solution to the constraint system {ϕ̂}, where ϕ̂ is ¬ϕ rewritten
into negation normal form. Our algorithm is based on the
constraint-reduction relation ↝P between constraint systems
and sets of constraint systems. We use sets of constraint
systems to represent case distinctions.

Intuitively, ↝P refines constraint systems and our algo-
rithm works by refining the initial constraint system {ϕ̂} until
it either encounters a solved system or all systems contain
(trivially) contradictory constraints. In the following, we first
define ↝P and then state our algorithm. Afterwards, we
give examples that explain and illustrate both the constraint-
reduction rules defining ↝P and our algorithm.

The rules defining the constraint-reduction relation ↝P
are given in Figure 10. There are two types of constraint-
reduction rules: (1) simplification rules that remove contra-
dictory constraint systems or refine constraint systems by
simplifying constraints and (2) case distinction rules that
refine constraint systems by adding further constraints. The
design choices underlying our rules are motivated by their use
in our algorithm. It requires them to be sound and complete
and we must be able to extract a P -solution from every
solved constraint system, i.e., every system that is irreducible
with respect to ↝P . The rule names refer to the form of
guarded trace formulas that they solve or the property of
normal dependency graphs that they ensure. There are no
rules for ensuring the properties N2–4, as they are maintained
as invariants by our algorithm.
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The formal definition of our constraint-reduction rules in
Figure 10 relies on the following additional conventions and
definitions. We extend the equality ≈ over terms to facts and
rule instances by interpreting the constructors for facts and
rule instances as free function symbols. We write PAIR↑ for
the construction rule for pairs and INV↑ for the construction
rule for inverses. Moreover, for a constraint system Γ, its
actions as(Γ), premises ps(Γ), and conclusions cs(Γ) are
defined as follows.

as(Γ) = {f@i ∣∃r a. (i ∶ l−−[ a ]→r) ∈ Γ ∧ f ∈ a}
ps(Γ) = {((i, u), lu) ∣∃r a. (i ∶ l−−[ a ]→r) ∈ Γ ∧ u ∈ idx(l)}
cs(Γ) = {((i, v), rv) ∣∃l a. (i ∶ l−−[ a ]→r) ∈ Γ ∧ v ∈ idx(r)}

A conclusion c is linear in Γ if there is a linear fact f such
that (c, f) ∈ cs(Γ). We say that p is an open f -premise
in Γ if (p, f) ∈ ps(Γ) and p has no incoming edges or
deconstruction chains in Γ. We say that p is an open implicit
m-construction in Γ if there is a premise (p,K↑e(t)) of Γ
with m ∈ inp(t) ∖ {t} and there is no implicit construction
c ↠ p in Γ that starts from a K↑e′(m)-conclusion. A term
m is trivial if m ∈ Vmsg ∪ Vpub ∪ PN ∪ {1}, where the term 1
denotes the unit in the group of exponents. The temporal
order of Γ is

(⋖Γ) = {(i, j) ∣ (i ⋖ j) ∈ Γ ∨ ∃u v. ((i, u)↣ (j, v)) ∈ Γ

∨ ((i, u)↠ (j, v)) ∈ Γ

∨ ((i, u)⇢ (j, v)) ∈ Γ}+ .

We call K↑- and K↓-premises message deduction constraints.
We give our constraint-solving algorithm in Figure 12.

It uses a set of constraint systems as its state Ω. It starts
with the state {{ϕ̂}}. Afterwards, in lines 4–6, it repeatedly
applies constraint-reduction steps as long as the state is non-
empty and does not contain a solved constraint system. To
formalize the loop condition, we use solved(Ω) to denote the
set of solved constraint systems in Ω. For automated protocol
analysis, we use a heuristic (explained in Appendix B-D)
to make the choice in line 5. Upon termination of the
while-loop, the algorithm has either found a solved con-
straint system (an attack) or it proved that {{ϕ̂}} has no
P -solution and therefore P ⊧EDH

ϕ holds. The following
two theorems justify the correctness of our algorithm.

Theorem 2. The constraint-reduction relation ↝P is sound
and complete; i.e., for every Γ ↝P {Γ1, . . . ,Γn}, the set
of P -solutions of Γ is equal to the union of the sets of
P -solutions of all Γi, with 1 ≤ i ≤ n.

Theorem 3. We can construct a P -solution from every solved
system in the state Ω of our constraint-solving algorithm.

The correctness of Theorem 3 relies on the properties of
solved constraint systems as well as invariants maintained
by our constraint-solving algorithm, as explained in Ap-
pendix B-D.

1: function SOLVE(P ⊧EDH
ϕ)

2: ϕ̂← ¬ϕ rewritten into negation normal form
3: Ω← {{ϕ̂}}
4: while Ω ≠ ∅ and solved(Ω) = ∅ do
5: choose Γ↝P {Γ1, . . . ,Γk} such that Γ ∈ Ω
6: Ω← (Ω ∖ {Γ}) ∪ {Γ1, . . . ,Γk}
7: if solved(Ω) ≠ ∅
8: then return “attack(s) found: ”, solved(Ω)
9: else return “verification successful”

Figure 12. Pseudocode of our constraint solving algorithm.

which hold for {{ϕ̂}} and are maintained by ↝P . We
prove both of these theorems in Appendix C-E.

D. Extended Examples
We now give two examples that provide a first intuition

for our constraint-reduction rules. Our emphasis is on the
rules and their application, rather than the heuristics used
in our algorithm. We provide individual explanations for
all of our constraint-reduction rules and their interaction in
Appendix B.

Example 7. Consider the protocol P from Example 1
and the formula ∀x k i. Fin(x, k)@i ⇒ ∃j. Rev(k)@j,
which can be rewritten to the guarded trace property
ϕ = ∀x k i. ¬(Fin(x, k)@i) ∨ (∃j. Rev(k)@j ∧ ¬(�)). We
explain how to use our constraint-reduction rules to show that
P ⊧EDH

ϕ, i.e., to show that {∃x k i. ψ} has no P -solutions,
for ψ = Fin(x, k)@i ∧ (∀j. ¬(Rev(k)@j) ∨ �).

By repeated application of the rules S∃ and S∧, we replace
the existentially quantified variables x, k, and i with fresh
free variables and split the conjunction in ψ. The resulting
constraint system is

{∃x k i. ψ, ∃k i. ψ, ∃i. ψ, ψ,
Fin(x, k)@i, ∀j. ¬(Rev(k)@j) ∨ �} .

Its P -solutions are the normal dependency graphs for P that
contain a node with a Fin(x, k) action, but no node with
a Rev(k) action. Note that the formulas ∃x k i. ψ, ∃k i. ψ,
∃i. ψ, and ψ are solved in the sense that no reduction rule
applies to them anymore.

The only rule applicable to the constraint system in the
above state is S@, which enumerates all rewriting rules that
could give rise to an action. We therefore apply S@ to the
Fin(x, k) action of node i and solve the introduced equalities
using S≈. There is only one resulting constraint system,
depicted in Figure 11 as System 1. Here we interpret a
constraint system as a partial, symbolic dependency graph
annotated with restrictions on its trace, stated as guarded
trace formulas. We do not depict the trace restriction
∀j. ¬(Rev(k)@j) ∨ �, as it is included in all constraint
systems. We also omit the exp tags of K-facts because the
protocol does not use exponentiation.

The large gray arrows in Figure 11 denote the constraint-
reduction steps performed. Multiple successors result from
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j1 :
Fr(x) Fr(k)

St(x, k) Out(enc(x, k)) Key(k)

j2 :
Fr(x : fresh)

j3 :
Fr(k : fresh)

i :
St(x, k) In(hx, xi)

[Fin(x, k)]

j4 :
K"(hx, xi)

· · · [K(hx, xi)]

j5 :
K#(x)

K"(x)

j6 :
. . .

K#(enc(x, k))
j11 :

K#(x)

K"(x)

j13:
. . .

Out(k)
[Rev(k)]

j12 :
. . .

K#(k)

j10 :
K#(enc(x, k)) K"

e(k)

K#(x)

1.1.2.1.1.1.1

) contradicts 8j.¬Rev(k)@j

1.1.2.1.1.1 (in Figure 11)

Figure 13. Example constraint system 1.1.2.1.1.1.1.

case distinctions. Constraint systems with no successors are
contradictory for the reason given in the figure. In some cases,
we contract multiple reduction steps for ease of presentation.

System 1 has multiple open non-K-premises. We solve
these by repeatedly applying DG22,P until no more open
non-K-premises remain. Intuitively, rule DG22,P solves open
non-K-premises by enumerating all possible rewriting rules
that have a unifying conclusion. The unification is entailed by
the constraint (i, u)↣ p and the rules DG12 and S≈, which
ensure the equality of facts connected by an edge. After
solving all non-K-premises, the only resulting constraint
system is System 1.1.

There is only one remaining open premise in System 1.1:
K↑(⟨x,x⟩). It is solved using rule DG22,↑i, which exploits
Lemma 3 to search directly for the possible origin of the
required input component x∶fresh. This rule improves the
efficiency of our algorithm as it allows reasoning modulo
pairing, inversion, and multiplication. Note that the rules
DG22,↑e and DG22,↑i exclude solving K↑(x) premises where
x is a variable of sort msg or pub, as such facts can always
be constructed by the adversary. These rules may however
become applicable once x is instantiated with another term
in a later step. There are two multiset rewriting rules in ND
whose conclusions are possible origins of x∶fresh.

The case for the rule (Fr(x∶fresh)−−[]→K↑exp(x∶fresh)) is
shown in System 1.1.1. Note that FRESH instances must be
unique and linear facts have at most one outgoing edge. This
is ensured by the rules DG4 and DG3, which together with
the rule Ulbl give rise to the chain of implications depicted in
System 1.1.1. The contradiction follows because the rewriting
rule instances of nodes j1 and j5 are not unifiable.

The case for the COERCE rule is shown in System 1.1.2.
Note that solving K↓-premises by enumerating the rules

with unifying conclusions leads to non-termination, as the
K↓-premises of deconstruction rules are larger than their
conclusions. This justifies the existence of rule DG22,↓, which
solves the K↓(x)-premise by exploiting Lemma 2 to introduce
a deconstruction chain starting from an IRECV instance. Rule
DG22,P then solves the open premise Out(y) of j6, i.e., it
enumerates all protocol rules that send messages. There are
two such rules in protocol P .

System 1.1.2.1 shows the case for the first protocol rule,
which is renamed apart from System 1.1.2 since node j7
might be a different rewriting rule instance than node j1. The
deconstruction chain from j6 to j5 is refined by rule DG2⇢ .
This rule embodies the case distinction that a deconstruction
chain is either just an edge or an edge to an instance of
a rule from NDdestr and another chain starting from the
conclusion of this instance. We disallow refining chains
that start from a message variable, as this would lead to
non-termination. Constraint systems containing such a chain
are often pruned using rule N6, as explained in Example 8.
After using rule DG2⇢ to refine the deconstruction chain
in System 1.1.2.1 twice, we obtain System 1.1.2.1.1 where x
and x′ are identified and the deconstruction chain has been
replaced with the edges to and from the decryption j10.
This is the only way to refine this chain starting from
K↓(enc(x′, k′)), as all other deconstruction rules lead to cases
with edges between non-unifiable facts. Again the uniqueness
of FRESH instances leads to a chain of implications and
results in System 1.1.2.1.1.1.

The only remaining open premise in this system is
the K↑(k)-premise of the decryption j10. The constraint-
reduction steps required to solve this premise are similar to
the ones used to solve the K↑(x)-premise in System 1.1.
System 1.1.2.1.1.1.1 in Figure 13 is the only one of the
resulting constraint systems that is not trivially contradictory
due to the uniqueness of FRESH instances. In fact, this system
could be instantiated to a normal dependency graph, if it
were not for the trace restriction ∀j. ¬(Rev(k)@j) ∨ �.
Since System 1.1.2.1.1.1.1 contains node j13 with a Rev(k)
action, we can use S¬,@ and S� to derive a contradiction.
We first derive � by applying S¬,@ to the trace restriction
∀j. ¬(Rev(k)@j) ∨ �, instantiating j with j13. Then, we
apply rule S�. In general, we can always saturate constraint
systems under universally quantified guarded trace formulas.
This works because all trace formulas in a constraint system
are guarded and the number of trace formulas derivable from
a constraint system using just S¬,@ is finite.

System 1.1.2.2 is also contradictory, which we show
Appendix A. Thus, we terminate without finding an attack
and, as our search is complete, we therefore have a proof
that P ⊧EDH

ϕ.

The above example provides intuition for all rules except
N1, N5,6, N6, and N7, which enforce normal-form message
deduction. We explain them in the following paragraphs.
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i2:
Out(x)

K#(x)

i3:
K#(k : fresh)

K"(k : fresh)

i1 :
K"(hx, yi)
In(hx, yi)

j:
In(hx, yi)
Out(x)

Figure 14. A contradictory constraint system where the adversary uses an
instance of the protocol rule In(⟨x, y, )⟩−−[]→Out(x) to forward to himself
the message x, which he deduced himself.

Rule N1 ensures that all rule instances in node constraints
are in ↓DH -normal form, i.e., it allows us to prune constraint
systems containing DH -reducible terms. Intuitively, this rule
prevents inconsistent instantiations of variables occuring in
the variants of a multiset rewriting rule. Consider for example
the multiset rewriting rule In(x)−−[]→Out(fst(x)). The cor-
responding DH,AC -variants are In(x)−−[]→Out(fst(x)) and
In(⟨y, z⟩)−−[]→Out(y). The rule N1 allows pruning constraint
systems where a node is labeled with the first variant and x is
instantiated with a pair, as such constraint systems contradict
the implicit assumption of the first rule variant, i.e., fst(x)
is not DH -reducible. Pruning constraint systems with DH -
reducible terms is crucial when reasoning about the variants
of DH exponentiations. Rule N7 provides further support for
reasoning about DH exponentatiations, as it prunes constraint
systems containing instances of deconstruction rules that
can be replaced by instances of the construction rule for
exponentiation.

Rule N5,6 ensures that each K↑- and K↓-fact is derived,
and therefore solved, at most once. Moreover, it ensures
that every K↑-premise deriving the same message as a K↓-
conclusion occurs after the K↓-conclusion. This is required
for Theorem 3 and allows pruning some constraint systems.

Rule N6 prunes constraint systems where the adversary
forwards a message via the protocol to himself. Such
constraint systems occur when unfolding a deconstruction
chain until it starts from a message variable whose content is
received from the adversary. This is best seen in an example.

Example 8. Consider solving the premise K↑(k∶fresh) in
the context of a protocol that contains the multiset rewriting
rule In(⟨x, y, )⟩−−[]→Out(x). One of the cases that we must
consider is captured by the constraint system depicted in
Figure 14. It states that the adversary might deduce k using
a deconstruction chain starting from the message x sent by
node j. Note that we suppress the exponentiation tags, as
they are irrelevant for this example. This constraint system
is contradictory because, in all its solutions, the adversary
must deduce K↑(x) before K↑(⟨x, y⟩), which implies that he
cannot deduce K↓(x) afterwards, as required by node i3. We
show that this constraint system is contradictory using rule

Protocol Security Model Result Time [s]

1. DH2 [31] weakened eCK [31] proof 6.7
2. KAS1 [30] KI+KCI [31] proof 0.3
3. KAS2 [30] weakened eCK [31] proof 2.9
4. KAS2 [30] eCK attack 0.4
5. KEA+ [5] KI+KCI proof 0.5
6. KEA+ [5] KI+KCI+wPFS attack 0.6
7. NAXOS [2] eCK proof 5.2
8. NAXOS [2] eCK+PFS attack on PFS 4.8
9. SIG-DH PFS proof 0.4
10. SIG-DH eCK attack 0.6
11. STS-MAC [3] KI, reg-PK UKS-attack 2.7
12. STS-MAC-fix1 [3] KI, reg-PK (with PoP) proof 8.6
13. STS-MAC-fix2 [3] KI, reg-PK proof 1.9
14. TS1-2004 [22] KI UKS-attack 0.2
15. TS1-2008 [29] KI proof 0.2
16. TS2-2004 [22] KI+wPFS attack on wPFS 0.4
17. TS2-2008 [29] KI+wPFS proof 0.7
18. TS3-2004/08 [22], [29] KI+wPFS non-termination -
19. UM [28] wPFS proof 0.7
20. UM [28] PFS attack 0.4

Table I
RESULTS OF CASE STUDIES

DG11 after we used rule N6 to derive i3 ⋖ i1.

VII. CASE STUDIES

We implemented our constraint-solving algorithm in a tool,
called the TAMARIN prover. It provides both a command-
line interface and a graphical user interface, which allows
to interactively inspect and construct attacks and proofs. We
evaluated our algorithm on numerous protocols. Table I lists
the results, run on a laptop with an Intel i7 Quad-Core
processor. The tool and all models are available at [19].

We modeled the Signed Diffie-Hellman (SIG-DH) protocol,
the STS protocol and two fixes [3], the UM [28], KEA+ [5],
and NAXOS [2] protocols, and the TS1, TS2, and TS3
protocols [22] and their updated versions [29]. We also
modeled NIST’s KAS1 and KAS2 protocols [30] and the
related DH2 protocol by Chatterjee et. al. [31]. For each
protocol, we formalized its intended and related security
models and analyzed them using TAMARIN. For example, to
verify Key Independence (KI) for STS, we model that the
adversary can reveal certain session keys. Additionally, the
adversary can register public keys for himself, even if those
keys have been previously registered for another identity. In
this example, we find the UKS attack reported in [3]. The
first fix from [3] requires a Proof-of-Possession (PoP) of
the private key for registering a public key. The second fix
includes the identities of the participants in the signatures.
We model and successfully verify both fixes. For NIST’s
KAS1 and KAS2 protocols [30], our analysis confirms both
the security proof and the informal statements made in [31].

Our results indicate that, in general, TAMARIN is effective
and efficient. For example, it requires 5.2 seconds to verify
NAXOS in the eCK model (see Figure 3).

In general, there are two sources of non-termination of our
algorithm. First, if the protocol contains loops (e.g., a rule like
A(x)−−[]→A(h(x))), then the reduction rule DG22,P can be
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applied infinitely often during backwards search. Reasoning
about such protocols requires support for loop invariants, as
used in program verification. Second, if the protocol can serve
as a generic message deduction oracle, then our normal-form
conditions may fail to eliminate sufficiently many redundant
steps. This explains the non-termination for the TS3-2004/08
protocols. It remains future work to develop normal-form
conditions that improve reasoning about such protocols.

VIII. RELATED WORK

Corin et. al. [32] and Armando et. al. [33] use linear
temporal logics and constraint solving for security protocol
verification for a bounded number of sessions. Cheva-
lier et. al. [8] and Shmatikov [9] prove that secrecy is
decidable for a bounded number of sessions for DH theories
similar to ours. Meadows et. al. [34] and Kapur et. al. [35]
present unification algorithms for a DH theory similar to ours.
In [35], Kapur et. al. show the undecidability of unification
modulo a DH theory that also allows addition of exponents.

[13]–[15] support verification for an unbounded num-
ber of sessions, but do not consider inverses. Blanchet
et. al. [13] extend ProVerif [36] to handle the property that
(xˆy)ˆz ≃ (xˆz)ˆy. Goubault-Larrecq [14] accounts for this
property using a Horn-theory approach and resolution modulo
AC . Escobar et. al. [15] use Maude-NPAand equational
unification to analyze secrecy properties of DH protocols.
Since Maude-NPA supports user-specified equational theories,
the verification problem with respect to our DH theory can
be specified. It is however unclear if Maude-NPA can achieve
unbounded verification for such a theory. In the free term
algebra, Basin and Cremers [16] present models and tool
support for compromising adversaries, based on Scyther [37].

Küsters and Truderung [7] give a transformation that, given
a Horn theory modeling secrecy and simple authentication
properties modulo a DH theory with inverses, produces a
Horn theory in the free algebra, which they analyze using
ProVerif. Their reduction is similar to our reduction from
EDH to AC , but works only for Horn clauses with ground
exponents. As stated in [7], stronger security properties
often violate this restriction. Since our approach allows for
non-ground exponents, we can also find attacks where the
adversary sends products, e.g., a protocol that receives a
message x and leaks a secret if g ˆ (a ∗ b ∗ x−1) = g.

Lynch and Meadows [10] and Mödersheim [11] give
reductions for DH reasoning without inverses to reasoning
modulo a simpler equational theory for a restricted class of
protocols. Both require that all exponents used by a protocol
remain secret forever. This excludes modeling ephemeral
key reveals and thus verifying recent AKE protocols. Ngo
et. al. [12] propose a method for the automated construction
of computational proofs for a restricted class of DH-based
protocols.

IX. CONCLUSION

We gave a novel constraint-solving algorithm and demon-
strated its effectiveness in non-trivial case studies. Our algo-
rithm exploits a special representation of message deduction
that satisfies a “deconstruction chain” property, inspired by
the theory underlying Athena [38] and Scyther [37], [39].
This property is key for achieving unbounded verification.
It enables a backwards exploration of the interleavings of
protocol steps guided by the solving of message deduction
constraints. We constructed this representation by imposing
normal-form conditions on the use of the (finite) variants
of the message deduction rules. This construction and our
algorithm should also work for other theories with the finite
variant property, e.g., theories for XOR and blind-signatures.

Although we were motivated by the verification of AKE
protocols, neither our protocol model nor our constraint-
solving algorithm are tailored to them. We expect both our
model and algorithm to be applicable to a wide range of
security protocol verification problems. Due to our multiset-
rewriting model, our approach is especially promising for
verifying protocols that exploit internal state, which are often
hard to analyze using the Horn-theory approach. We plan
to investigate such stateful protocols in future work together
with support for loop invariants.
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Figure 15. Screenshot of the constraint-solving visualization provided by the TAMARIN prover. Here we use it to characterize ∃x k i. Fin(x, k)@i for
our example protocol P from Example 1. We explain the idea behind such a characterization at the end of Appendix A. The left half provides an overview
of the steps taken by our constraint-solving algorithm. The steps stem from trying to prove that there exists a trace such satisfying (∃x k i. Fin(x, k)@i).
The desired characterization consists of all leaves marked with “SOLVED”. The corresponding constraint systems cover all possible P -solutions of this
property. In the right half, a visualization of the constraint system corresponding to the step marked with a yellow background is shown. It corresponds to
System 1.1.2.1.1.1.1 from Figure 16. The orange, dashed arrow from node #vr.1 to #vf denotes an implicit construction dependency. The black, dotted
arrows denote additional ordering constraints on the nodes. They are implied by the property N6. The solid arrows denote edge constraints. Their width and
color depends on the type of fact that they connect.
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Figure 16. Remaining constraint-reduction steps from Example 7. We explain these remaining steps in Appendix A. The “. . .” at either end of an edge
refers to the fact at the other end.
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APPENDIX A.
REMAINDER OF CONSTRAINT-SOLVING EXAMPLE

In this section, we finish Example 7 from Section VI. In
System 1.1.2 from Figure 11, the Out(y)-premise of node j6
is open. Solving it results in two cases. We already explained
the first one in Example 7 and explain the second one here.

The constraint system for the second case is depicted in
Figure 16 as System 1.1.2.2. It states that the required Out-
premise might stem from the conclusion of the instance of the
rule of protocol P , defined in Example 1, that allows a key
reveal. After solving the open Key(k′) premise and reducing
the deconstruction chain, we obtain the trivially contradictory
System 1.1.2.2.1. Note that j2 = j10 is contradictory, as it
requires the edge from the Fr(x)-fact to end both in a first
and a second premise of a multiset rewriting rule.

Note that that we can also use a variant of our algorithm
to characterize all possible executions of a protocol that
exhibit a certain structure; thereby generalizing the work
on characterizing shapes in strand spaces [40] to labeled
multiset rewriting systems and guarded trace properties.
The variant of our algorithm works such that it runs as
long as unsolved constraint systems remain in its state.
The remaining solved constraint systems characterize all
executions that satisfy the initial constraint system. For our
example, characterizing the executions of P that satisfy
∃x k i. Fin(x, k)@i results in the single solved constraint
system equal to System 1.1.2.1.1.1.1 without the trace restric-
tion ∀j. ¬(Rev(k)@j). Figure 15 shows a screenshot of
the characterization of ∃x k i. Fin(x, k)@i for our example
protocol P as computed by our implementation.

APPENDIX B.
EXPLANATION OF CONSTRAINT-REDUCTION RULES

Recall that our constraint-reduction rules are designed
such that we can extract a P -solution from every solved
constraint system. To understand the rules, it therefore helps
to focus on the partial solution of a constraint system
Γ. We define the partial solution of Γ as the set of all
nodes, edges, timepoint orderings, and implicit construction
dependencies of Γ. Informally, the partial solution of a solved
constraint system Γ is converted to a P -solution of Γ by
first instantiating all variables with distinct names and trace
indices, chosen according to their sort, and then expanding
the implicit construction constraints. The fact that no rule is
applicable to a solved constraint system guarantees that this
conversion succeeds and results in a P -solution.

Our rule naming scheme embodies this design: the name
of a rule refers to the form of guarded trace formulas that it
solves or the property of normal dependency graphs that it
ensures. If there are several rules responsible for ensuring a
property, then they are distinguished by subscripts.

We now explain each of the three groups of rules from
Figure 10. Afterwards, we explain the strategy that our
algorithm uses to decide when to apply which rule.

A. Trace Formula Reduction Rules

The first group of rules ensures that the partial solution
satisfies the guarded trace formulas in the constraint system.
All of these rules have side-conditions that ensure that they
cannot be applied multiple times with the same parameters.
The interaction between guarded trace formulas and graph
constraints happens via the rules S≈, S≐, S@, S¬,@, S¬,⋖,
and S∀.

The rule S≈ solves an equality between two terms by
performing a case distinction over all possible AC -unifiers.
The rule S≐ solves an equality between two temporal variables
by substituting all occurrences of one by the other. The
rule S@ solves an action constraint f@i by introducing
a new node constraint i ∶ ru for every protocol rule ru
that could give rise to the action f . The rules S¬,≈ and
S¬,≐ derive contradictions from negated equalities. The rule
S¬,@ derives a contradiction from a negated action. The rule
S¬,⋖ performs a case distinction to solve negated timepoint
ordering constraints that do not trivially hold.

The rule S� removes contradictory constraint systems. The
rule S∨ performs a case distinction to solve a disjunction. The
rule S∧ adds the conjuncts of a conjunction to the constraint
system. The rule S∃ ensures that, for every existential
quantification ∃x∶s.ϕ, there is at least one term w of sort
s such that ϕ{w/x} holds. Intuitively, the rule S∀ saturates
the constraint system under the guarded trace formulas and
the actions of nodes in the partial solution. It introduces the
guarded trace formula ψσ for every guarded trace formula
∀x⃗.¬(f@i) ∨ ψ whose guard f@i matches an action of the
constraint system under the substitution σ. It checks whether
ψσ ∉AC Γ modulo renaming of bound variables to avoid
introducing the same guarded trace formula multiple times.
This check suffices, as we never remove a guarded trace
formula from the constraint system.

B. Graph Constraint-Reduction Rules

The second group of rules ensures that the partial solution
satisfies all properties of dependency graphs. The rule Ulbl

ensures nodes are uniquely labeled. The rule DG11 prunes
constraint systems where ⋖Γ is not a strict partial order. The
rule DG12 ensures that edges connect facts that are equal
modulo AC . The rule DG21 ensures that each premise has
at most one incoming edge. The rule DG22,P ensures that
each premise has at least one incoming edge. The definition
of open premises ensures that this rule is not applied twice
to the same premise. We exclude K↑- and K↓-facts from
being solved with this rule, as they must be solved with the
special rules for solving message deduction constraints to
avoid non-termination. The rule DG3 ensures that each linear
conclusion has at most one outgoing edge. The rule DG4
ensures that instances of the FRESH rule are unique.

Note that the rules Ulbl and DG12 rely on the rule S≈
for solving the introduced equalities. Provided that these
equalities are solved eagerly, repeatedly applying only rules
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from this group, except DG22,P , is guaranteed to terminate.
Repeatedly applying rule DG22,P is not guaranteed to
terminate for all protocols. It can for example be applied
infinitely often, when reasoning about the protocol

{[]−−[]→A(1), A(x)−−[]→A(x)} .

Our constraint-reduction relation must be extended with
additional rules to ensure termination for such protocols.
Nevertheless, for typical security protocols, the rule DG22,P

suffices to reason about their execution, as the dependency
relation between facts other than K↑- and K↓-facts is well-
founded.

C. Message Deduction Constraint-Reduction Rules

The third group of rules allows reasoning about message
deduction constraints. The rules DG22,↑i and DG22,↑e solve
open K↑-premises. The rules DG22,↓ and DG2⇢ solve open
K↓-premises. All four rules can be seen as refined versions of
the DG22,P rule, which exploit our normal-form conditions
to improve efficiency and avoid non-termination. The rules
N1, N5,6, and N6 ensure that the partial solution satisfies
the normal-form conditions N1,5,6. There are no rules for
ensuring the normal-form conditions N2-4 because, as we
will see, they hold by construction. All of these rules
work together to solve message deduction constraints. Their
interplay can be observed well in Example 7. Here, we
explain each rule individually.

The rule DG22,↑e solves an open K↑e(m)-premise p by
enumerating all rules that have a unifying K↑-conclusion.
The side condition {m} = inp(m) ensures that m is not a
pair, inverse, or product, as such K↑-premises are handled
by the rule DG22,↑i. The rule is only applied to non-trivial
messages, as we can always introduce the incoming edges of
trivial K↑-premises when extracting a solution from a solved
constraint system. The requirement that the open premise is
equal to the added conclusion is ensured indirectly via the
added edge constraint (i,1)↣ p and the rule DG12.

The rule DG22,↑i solves an open implicit m-construction
p by enumerating all rewriting rules that have a unifying K↑-
conclusion. This rule exploits Lemma 3 to directly enumerate
the possible deductions of input components of messages
known to the adversary. Compared to the rule DG22,↑e, this
rule avoids an exponential blowup when solving pair K↑-
premises, as it avoids (for each nesting of the pair constructor)
the case distinction whether the unifying K↑-conclusion stems
from the PAIR ↑ or the COERCE message deduction rule.
Similarly, it leads to efficiency improvements when solving
inverse and product K↑-premises.

Rule DG22,↓ solves an open K↓-premise by introducing an
arbitrary instance of the IRECV rule from which the adversary
deduced the K↓-premise using a chain of deconstruction
rules. Such an instance of the IRECV rule must exist due to
Lemma 2. The possible messages sent by the protocol from

Out(ha, bi)
K#(ha, bi)

K#(ha, bi)
K#(b)

K#(ha, bi)
K#(a)

K#(a)

K"(a)

K#(b)

K"(b)

K"(a) K"(b)

K"(ha, bi)

Figure 17. An example of the deduction of K↑(⟨a,b⟩) from Out(⟨a,b⟩)
in a normal dependency graph. Because of condition N2, the pair must
be deconstructed first, which results in K↓-conclusions deriving the same
message as K↑-conclusions.

which the chain could start are enumerated using the rule
DG22,P on the newly introduced Out(t) premise.

Rule DG2⇢ refines a deconstruction chain by unfolding its
definition by one step. It makes a case distinction on whether
a deconstruction chain consists of a single edge or an edge to
a deconstruction rule ri and a further deconstruction chain
starting from the conclusion of ri . We disallow refining
chains that start from a message variable, as this would lead
to non-termination.

Note that later constraint-reduction steps will often instan-
tiate this message variable and allow us to finish refining the
chain. This is always the case for protocols that check the
types of encrypted or signed data. We can model such type
checks using sorts. This is sound for any implementation
that ensures that all bitstrings representing terms of one
sort are different from all bitstrings representing terms of
any other incomparable sort. To reason about protocols that
receive arbitrary messages as cleartext, we use the rule N6, as
explained in Example 8. The constraint-reduction rules given
here are not sufficient to reason about protocols that blindly
forward encrypted messages; e.g., a protocol containing a rule
like In(enc(x, k1)−−[]→Out(enc(x, k2)) for x∶msg. For such
protocols, we must prove an additional protocol specific
invariant that characterizes the possible instantiations of
the forwarded messages (see [39, Section 3-B] for such
an invariant). This is outside the scope of this paper.

Rule N1 ensures that all rule instances in node constraints
are in ↓DH -normal form, which holds due to property N1.
Rule N5,6 exploits that the K-conclusions of all rule instances,
except the instances of the COERCE rule and the pair and
the inversion construction rules, are unique, regardless of the
deconstruction and exponentiation tags. The conclusions of
instances of the COERCE rule and the pair and the inversion
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construction rules are not guaranteed to be unique because we
enforce long-normal-form message deductions. See Figure 17
for an example. Nevertheless, even with long-normal-form
deductions, every K↑-premise deriving the same message as a
K↓-conclusion can only occur after this K↓-conclusion. Rule
N6 exploits this property. This rule is important, as it allows
us to prune constraint systems where the adversary forwards a
message via the protocol to himself. Such constraint systems
occur when unfolding a deconstruction chain until it starts
from a message variable whose content is received from the
adversary.

D. Rule Application Strategy

We currently use a very simple rule application strategy.
Whenever possible, we apply a rule that is guaranteed not
to result in a case distinction; i.e., we apply one of the rules
S�, S≈, S≐, S¬,≈, S¬,≐, S¬,@ S∧, S∃, S∀, Ulbl, DG11, DG12,
DG21, DG3, DG4, N1, N5,6, or N6. Otherwise, we use the first
applicable rule from the following list: S@, S∨, S¬,⋖, DG22,P ,
DG2⇢ . DG22,↓, DG22,↑i, and DG22,↑e. These rules may result
in a case distinction.

Often there are several open K↑-premises in a constraint
system. The order of solving them has a significant impact
on the size of the generated proofs and therefore the runtime
of the algorithm. We use the following heuristic to delay
the solving of K↑-premises that are unlikely to result in a
contradiction. We delay solving a premise p requiring a
message m, if m does not contain a variable of sort fresh or
if m can be extracted using projection and inversion from
a message sent by a protocol step that does not occur later
than p. Intuitively, we delay solving such premises because
the adversary is likely to be able to construct their required
messages.

APPENDIX C.
PROOFS

As stated in Section IV, our approach supports the
combination of DH, pairing, and an arbitrary subterm-
convergent rewrite theory. We therefore perform all proofs
with respect to an arbitrary equational theory with these
properties and extend the definitions from the main body of
the paper where necessary.

In the following, we assume given a signature ΣST where
all function symbols have sort msg × . . . × msg → msg and
a subterm convergent rewriting system RST where all left-
hand-sides are built from ΣST and Vmsg. Then

ΣDH = {⟨ , ⟩, fst( ), snd( ), ˆ , −1, ∗ ,1} ⊎ΣST

and EDH is generated by RST and Equations (2–10)
from Figure 2. Note that this covers our original defi-
nition for ΣST = {enc( , ),dec( , ),h( )} and RST =
{dec(enc(m,k), k)→m}.

Where convenient, we use mult, exp, and inv to denote
the function symbols ∗, ˆ , and −1.

A. Background for Proofs

A position is a sequence of natural numbers. For a term t
and a position p, we denote the subterm of t at position p with
t∣p. Formally, t∣p is defined as t if p = [], ti∣p′ if p′ = [i] ⋅ p
and t = f(t1, . . . , tk) for 1 ≤ i ≤ k, and undefined otherwise.
We say p is a valid position in t if t∣p is defined. For two
positions p and p′, p is above p′ if p is a proper prefix of p′.
In this case, p′ is below p. If p is neither above nor below
nor equal to p′, then both positions are incomparable. We
say p and p′ are siblings if ∣p∣ = ∣p′∣, pi = p′i for 1 ≤ i < ∣p∣,
and p∣p∣ ≠ p′∣p∣.

B. Proofs for Section V-A

The following lemma formalizes the relation between the
multiset-rewriting-based semantics given in Section IV and
the dependency-graph-based semantics for the same protocol
and message deduction rules.

Lemma 4 (Justification of the statement on page 6.). For
all protocols P ,

traces(P ) =EDH
{trace(dg) ∣dg ∈ dgraphsEDH

(P ∪MD)} .

Proof: We first define cfacts(dg) as the multiset of
consumable facts in a dependency graph, i.e., the facts of
persistent conclusions and linear conclusion with no outgoing
edges in dg. We prove both directions separately.
⊆EDH

: First, we prove by induction over the multiset rewriting
derivation ∅♯ A1Ð→P . . .

AkÐ→P Sk, that if each instance
of the FRESH rule is used at most once, then there is
dg = (I,D) ∈ dgraphsEDH

(P ∪MD) such that

cfacts(dg) =EDH
Sk, (1)

Ij+1 = −−[]→Fr(m) iff Sj+1 ∖♯ Sj = {Fr(m)}♯, (2)
and trace(dg) =EDH

[A1, . . . ,Ak]. (3)

For the multiset rewriting derivation ∅♯, the empty de-
pendency graph ([],∅) satisfies (1)–(3). Let ∅♯ A1Ð→P
. . .

AkÐ→P Sk and dg = (I,D) ∈ dgraphsEDH
(P ∪MD)

such that (1)–(3) hold. Let Ak+1 and Sk+1 arbi-
trary such that Sk

Ak+1ÐÐÐ→P Sk+1 and the uniqueness
condition for FRESH is not violated. Then there
must be some rule l′−−[ a′ ]→r′ ∈ ginsts(P ∪ MD ∪
{FRESH}) and l−−[ a ]→r =EDH

l′−−[ a′ ]→r′ such that
(a) lfacts(l) ⊆♯ Sk, (b) pfacts(l) ⊆ set(Sk), (c) Ak+1 =
set(a), and (d) Sk+1 = ((Sk ∖♯ lfacts(l)) ∪♯ mset(r)).
We can extend dg with a node k + 1 with rule
instance l′−−[ a′ ]→r′ since (a), (b), and (1) ensure
that we can add the required edges. We call this
extension dg′. Note that we require equality modulo
EDH here for DG1. If the rule is an instance of
FRESH, then (2) ensures that we do not violate DG4.
Then (2) holds because the same FRESH instance
has been added to both. Condition (3) holds because
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set(a) =EDH
set(a′), and (1) holds because r =EDH

r′

and lfacts(l) =EDH
lfacts(l′).

⊇EDH
: For the other direction, we prove by induction over I

that for all dg = (I,D) ∈ dgraphsEDH
(P ∪MD), there

is ∅♯ A1Ð→P . . .
AkÐ→P Sk such that (1)–(3) hold. The

proof is analogous to the other direction.

C. Proofs for Section V-B

To account for the modified definition of EDH , we change
the definition of DH to: DH is the union of RST and the
rewriting system obtained by orienting equations (2–3,9–10)
from Figure 2 and all equations from Figure 6 from left
to right. Then DH is AC -coherent and AC -convergent, an
equational presentation of EDH , and EDH has the finite
variant property for this presentation. In the following, we
denote the equations (1–10) from Figure 2 by (D1–D10) and
the equations (1–10) from Figure 6 by (L1–L10).

The following Lemma formalizes the relation between
dependency graphs modulo EDH and dependency graphs
modulo AC .

Lemma 5 (Justification of the statement on page 7). For all
protocols P ,

dgraphsEDH
(P ∪MD)××ÖDH

=AC {dg ∣ dg ∈ dgraphsAC (⌈P ∪MD⌉DH )
∧ dg ↓DH -normal }.

Proof: We prove both directions separately.
⊆AC : We prove this by induction on the length k of the

sequence of rule instances. If k = 0, then the empty
dependency graph is also an element of the set on
the right-hand-side. Let dg ∈ dgraphsEDH

(P ∪ MD)
such that dg×ÖDH ∈AC dgraphsAC (⌈P ∪ MD⌉DH ).
Let dg′ an extension of dg with ri ∈ ginsts(P ∪
MD ∪ {FRESH}) and the required edges such that
DG4 is not violated. Then dg′×ÖDH contains the new
rule instance ri ↓DH and is ↓DH -normal. To see that
dg′×ÖDH ∈AC dgraphsAC (⌈P ∪ MD⌉DH ), note that
equality of edge source and target modulo EDH

implies equality modulo AC after normalization. To
see that ri↓DH ∈AC ginsts(⌈P ∪MD⌉DH ∪{FRESH}),
we distinguish two cases. First, if ri is an instance of
FRESH, then ri is already ↓DH -normal, ri↓DH ∈AC

ginsts(FRESH), and DG4 is not violated. Second,
if ri is not an instance of FRESH, then there is
ru ∈ P ∪ MD with ru σ = ri . Hence, there is a
variant ru ′ ∈ ⌈P ∪ MD⌉DH and a substitution σ′

such that ri ↓DH = (ru σ)×ÖDH =AC ru ′σ′ and hence
ri ↓DH ∈AC ginsts(⌈P ∪MD⌉DH ).

⊇AC : We prove this by induction on the length k of the
sequence of rule instances. If k = 0, then the empty
dependency graph is clearly also an element of the

set on the left-hand-side. Let dg ∈ dgraphsAC (⌈P ∪
MD⌉DH ) and dg ↓DH -normal such that there is d̂g ∈
dgraphsEDH

(P ∪ MD) with d̂g ↓DH=AC dg. Let dg′

be an extension of dg with ri ∈ ginsts(⌈P ∪MD⌉DH ∪
{FRESH}) and the required edges such that ri ↓DH -
normal and DG4 not violated. The FRESH case is
straightforward. In the other case, there is ru ∈ P∪MD
and σ such that ri =EDH

ru σ. Hence, we can extend
d̂g with ru σ ∈ ginsts(P ∪ MD) and obtain d̂g

′ ∈
dgraphsEDH

(P ∪MD) with d̂g
′ ↓DH=AC dg′.

D. Proofs for Section V-C

1) ∗-restricted Protocols: To account for the additional
reducible function symbols in ΣST, we change condition
(a) in the definition of ∗-restricted protocols to: l does not
contain ∗, ˆ, −1, fst, snd, and function symbols f such that
there is s→ t ∈ RST with root(s) = f .

The definition of ∗-restricted protocols is motivated by
the idea that we can restrict ourselves to protocols that do
not “generate new products”. Because we want to allow
unrestricted usage of exponentiation and inversion, this is
impossible to achieve. Instead, the definition ensures that
newly generated products only combine factors that have
been generated earlier. For products that occur in exponent-
position, we cannot guarantee this, but these cannot be
extracted anyways. To formally prove this result, we first
define the right notion of factors.

Definition 1. The factors of a term t are defined as follows.

factors(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

factors(u) ∪ factors(v) if t = u ∗ v
factors(s) if t = s−1

{t, t−1} otherwise

Since we cannot forbid all occurrences of products, we
first define a set of positions where no term can be extracted
from.

Definition 2. A position p is an exponent position if
root(t∣p′) = exp and p′ ⋅ [2] is either above or equal to p. We
extend this definition to facts in the expected way, i.e., for a
fact F (t1, . . . , tk), the position [i] ⋅p is an exponent position
if p is an exponent position in ti. Analogously, we extend
the definition to sequences of facts and multiset rewriting
rules. We say a position is accessible if it is not an exponent
position.

Definition 3. An accessible product position in a term
t is an accessible position p in t such that t∣p is a
product. We use appos(t) to denote this set of positions.
The accessible factors of a term t are then defined as
afactors(t) = ⋃p∈appos(t) factors(t∣p). Analogously, we define
the accessible variable positions p in t such that t∣p ∈ Vmsg

and denote them with avpos(t). The accessible variables of
a term t are then defined as avars(t) = ⋃p∈avpos(t){t∣p}. We
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extend these notions to facts, sequences of facts, and multiset
rewrite rules in the expected way.

We can now define the required condition on multiset
rewriting rules that do not “construct accessible products”.
Note that since we want to allow unrestricted usage of
exponentiation and inversion, the condition is slightly weaker
and only ensures that such rules do not create accessible
products with new factors. This is exactly the property we
require to simplify the message deduction.

Definition 4. A multiset rewriting rule l−−[ a ]→r is factor-
restricted if for all ↓DH -normal substitutions σ,

afactors((rσ)↓DH ) ⊆AC afactors((lσ)↓DH ).

A protocol P is factor-restricted if all l−−[ a ]→r ∈ P are
factor-restricted.

Since the definition of factor-restricted contains an univer-
sal quantification over all substitutions, it is hard to check in
practice. We therefore prove that the syntactic ∗-restricted
criterion implies factor-restricted.

Lemma 6. All ∗-restricted protocol rules are factor-
restricted.

Before we can prove this lemma, we have to prove some
auxiliary results about the interaction of avars, factors, and
afactors with normalization and instantiation.

Definition 5. We define the set of products as

Prod = {invk(a ∗ b) ∣k ∈ N ∧ a, b ∈ T }.

Lemma 7. For all terms t, either t ∈ Prod and
factors(t)×ÖDH ⊆AC afactors(t)×ÖDH or t ∉ Prod
and factors(t)×ÖDH ⊆AC {t, t−1}×ÖDH . Hence
factors(t)×ÖDH ⊆AC {t, t−1}×ÖDH ∪ afactors(t)×ÖDH .

Proof: Let t′ such that t = invk(t′) and root(t′) ≠ inv.
We perform a case distinction on the outermost function
symbol of t′. If t′ = a ∗ b, then t ∈ Prod and factors(t) =
factors(a) ∪ factors(b) ⊆ afactors(t). If root(t′) ∉ {∗},
then t ∉ Prod and factors(t)×ÖDH =AC {t′, t′−1}×ÖDH =AC

{t, t−1}×ÖDH .

Lemma 8. For all terms t and t′ such that t →DH ,AC

t′, factors(t′)×ÖDH ⊆AC factors(t)×ÖDH ∪ afactors(t)×ÖDH ∪
{1}.

Proof: We prove this by induction over terms. First,
note that the base cases for variables and names hold since
no rewrite rule is applicable

● t = inv(s):
If t is rewritten below the root position, then t′ = inv(s′)
for some s′ such that s→DH ,AC s′ and we can conclude

the case as follows.

factors(t′)×ÖDH

=AC [since t′ = inv(s′)]
factors(s′)×ÖDH

⊆AC [by IH]
factors(s)×ÖDH ∪ afactors(s)×ÖDH ∪ {1}

=AC [since t = inv(s)]
factors(t)×ÖDH ∪ afactors(t)×ÖDH ∪ {1}

If t is rewritten at the root position, then we have to
consider the rules (L1), (L6), and (L8). For all rewriting
steps t →DH ,AC t′ that apply one of these rules at
the root position, it is easy to see that factors(t′) =AC

factors(t).
● t = g(s1, . . . , sk) for g ∉ {∗, ˆ, inv}:

If t is rewritten below the root position, then root(t′) = g,
t, t′ ∉ Prod, and therefore

factors(t′)×ÖDH =AC {t′, t′−1}××ÖDH

=AC {t, t−1}××ÖDH

=AC factors(t)×ÖDH .

If t is rewritten at the root position, then there is a
substitution σ and a rewriting rule l → r from RST or
equal to one of the rules for pairing such that t =AC lσ
and t′ =AC rσ. We have to consider two cases. First,
r is a ground term built over ΣST. Then t, t′ ∉ Prod
and the same reasoning as in the previous case applies.
Second, r is a proper subterm of l and t′ = t∣p for
some accessible position p. To see that p is accessible,
first note that no position strictly above p is a variable
position in l, l does not contain ∗, and p is a valid
position in l. Hence root(l∣p̃) = root(t∣p̃) ≠ exp for all
positions p̃ strictly above p and p accessible. If t′ ∈
Prod, then factors(t′)×ÖDH ⊆AC afactors(t′)×ÖDH ⊆AC

afactors(t)×ÖDH by Lemma 7 and because p is ac-
cessible in t. If t′ ∉ Prod, then factors(t′)×ÖDH =AC

{t′, t′−1}×ÖDH =AC {t, t−1}×ÖDH =AC factors(t)×ÖDH

since t is also not in Prod.
● t = a ˆ b:

There are three possibilities, either t is rewritten below
the root position, at the root position with rule (D9),
or at the root position with the rule (D10). For the the
first two cases, and the third case with a not a product,
t′ ∉ Prod and

factors(t′)×ÖDH =AC {t′, t′−1}××ÖDH

=AC {t, t−1}××ÖDH

=AC factors(t)×ÖDH .
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For the third case with a ∈ Prod, then and t′ = a and

factors(a)×ÖDH ⊆AC afactors(a)×ÖDH

⊆AC afactors(t)×ÖDH

since a accessible in t.
● t = s1 ∗ s2:

If t is rewritten below the root position, then we assume
without loss of generality that t′ =AC s′1 ∗ s2 for some
s′1 with s1 →DH ,AC s′1. Then we can conclude the case
as follows.

factors(t′)×ÖDH

=AC [since t′ = s′1 ∗ s2]
factors(s′1)×ÖDH ∪ factors(s2)×ÖDH

⊆AC [by IH]
factors(s1)×ÖDH ∪ afactors(s1)×ÖDH

∪ {1} ∪ factors(s2)×ÖDH

⊆AC [since t = s1 ∗ s2]
factors(t)×ÖDH ∪ afactors(t)×ÖDH ∪ {1}

If t is rewritten at the root position, then we have to
consider the rules (L2)–(L5) and (L7), and (L9)–(L10).
For all rewriting steps t →DH ,AC t′ that apply one of
these rules at the root position, it is easy to see that
factors(t′) ⊆AC factors(t) ∪ {1}.

Lemma 9. For all terms t and t′ such that t →DH ,AC t′,
afactors(t′)×ÖDH ⊆AC afactors(t)×ÖDH ∪ {1}.

Proof: We prove this by induction over terms. First,
note that the base cases for variables and names hold since
no rewrite rule is applicable.

● t = inv(s):
If t is rewritten below the root position, then t′ =AC

inv(s′) for some s′ with s →DH ,AC s′ and we can
prove the case as follows.

afactors(t′)×ÖDH

=AC [since t′ = inv(s′)]
afactors(s′)×ÖDH

⊆AC [by IH]
afactors(s)×ÖDH ∪ {1}

=AC [since t = inv(s)]
afactors(t)×ÖDH ∪ {1}

If t is rewritten at the root position, then we have to
consider the rules (L1), (L6), and (L8). For all rewriting
steps t→DH ,AC t′ that apply one of these rules at the
root position, it is easy to see that afactors(t′) =AC

afactors(t).

● t = g(s1, . . . , sk) for g ∉ {∗, ˆ, inv}:
If t is rewritten below the root position, then t′ =
g(s′1, . . . , s′k) such that si →DH ,AC s′i for some 1 ≤
i ≤ k and sj =AC s′j for j ≠ i and we can prove the
case as follows.

afactors(t′)×ÖDH

=AC [since t′ = g(s′1, . . . , s′k)]

∪ki=1 afactors(s′i)×ÖDH

⊆AC [by IH]

(∪ki=1 afactors(si)×ÖDH ) ∪ {1}
=AC [since t = g(s1, . . . , sk)]

afactors(t)×ÖDH ∪ {1}
If t is rewritten at the root position, then then there is a
substitution σ and a rewriting rule l → r from RST or
equal to one of the rules for pairing such that t =AC lσ
and t′ =AC rσ. We have to consider two cases. First, r
is a ground term built over ΣST. Then afactors(t′) = ∅.
Second, r is a proper subterm of l and t′ =AC t∣p for
some accessible position p. Hence, for all p′ ∈ appos(t′),
there exists a p′′ ∈ appos(t) with t′∣p′ =AC t∣p′′ . Hence
afactors(t′) ⊆AC afactors(t). To see that p is accessible,
first note that there is a subterm rule l → r such that
t =AC lσ. Since no position strictly above p is a variable
position in l and l does not contain ∗, p is a valid position
in l. Hence root(t∣p̃) = root(l∣p̃) ≠ exp for all positions
p̃ strictly above p and p accessible.

● t = a ˆ b:
If t is rewritten below the root position, then either
t′ =AC a′ ˆb for some a′ with a→DH ,AC a′ or t′ = aˆb′

for some b′ with b →DH ,AC b′. The first case can be
proved as follows.

afactors(t′)×ÖDH

=AC afactors(a′)×ÖDH [exponent not accessible]
⊆AC afactors(a)×ÖDH ∪ {1} [by IH]
=AC afactors(t)×ÖDH ∪ {1} [since t = a ˆ b]

In the second case, afactors(t′)×ÖDH =AC

afactors(a)×ÖDH =AC afactors(t)×ÖDH .
If t is rewritten at the root position, then we have to
consider the rules (D9) and (D10). In the first case, there
are g and c such that t = (g ˆ c) ˆ b and t′ = g ˆ (c ∗ b).
We can prove this case as follows.

afactors(t′)×ÖDH

=AC afactors(g)×ÖDH [exponent not accessible]
=AC afactors(t)×ÖDH [since t = (g ˆ c) ˆ b]

In the second case b = 1, t′ =AC a and hence

afactors(t′)×ÖDH =AC afactors(a)×ÖDH

=AC afactors(a ˆ 1)×ÖDH .
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● t = s1∗s2: If t is rewritten below the root position, then
we assume without loss of generality that t′ = s′1∗s2 for
some s′1 with s1 →DH ,AC s′1. Then we can conclude
the case as follows.

afactors(t′)×ÖDH

=AC [t′ = s′1 ∗ s2]
afactors(s′1)×ÖDH ∪ afactors(s2)×ÖDH

∪ factors(s′1)×ÖDH ∪ factors(s2)×ÖDH

⊆AC [by IH]
afactors(s1)×ÖDH ∪ afactors(s2)×ÖDH

∪ factors(s′1)×ÖDH ∪ factors(s2)×ÖDH ∪ {1}
⊆AC [by Lemma 8]

afactors(s1)×ÖDH ∪ afactors(s2)×ÖDH

∪ factors(s1)×ÖDH ∪ factors(s2)×ÖDH ∪ {1}
=AC [since t = s1 ∗ s2]

afactors(t)×ÖDH ∪ {1}

If t is rewritten at the root position, then we have to
consider the rules (L2)–(L5), (L7), (L9)–(L10). For all
rewriting steps t→DH ,AC t′ that apply one of these rules
at the root position, it is easy to see that afactors(t) ⊆AC

afactors(t′) ∪ {1}.

Lemma 10. For all terms t,

afactors( t↓DH ) ⊆AC afactors(t)×ÖDH .

Proof: Directly follows from t ↓DH -normal or
t →+

DH ,AC t↓DH using Lemma 9 and the fact that for a
product s that is ↓DH -normal, 1 ∉ factors(s).

Lemma 11. For all terms t,

factors( t↓DH ) ⊆AC factors(t)×ÖDH ∪ afactors(t)×ÖDH ∪{1}.

Proof: We prove this by induction over the length of
the rewriting sequence t1 → . . .→ tk where tk ↓DH -normal.
The base case clearly holds and assuming the hypothesis for
k − 1, we conclude with

factors(tk)
⊆AC [IH]

factors(t2)×ÖDH ∪ afactors(t2)×ÖDH ∪ {1}
⊆AC [Lemma 8 and 9]

factors(t1)×ÖDH ∪ afactors(t1)×ÖDH ∪ {1}.

Lemma 12. For all terms t and ↓DH -normal substitutions
σ,

afactors(tσ)×ÖDH =AC (afactors(t)σ ∖ Prod)×ÖDH

∪ (∪x∈avars(t) afactors(xσ)×ÖDH ).

Proof: Let σ arbitrary and

Ft = (afactors(t)σ ∖ Prod)×ÖDH∪(∪x∈avars(t) afactors(xσ)×ÖDH ).

Note that

∪ki=1 afactors(si) =AC afactors(t) and

∪ki=1 avars(si) = avars(t)
implies ∪ki=1 Fsi =AC Ft. (1)

We prove afactors(tσ)×ÖDH =AC Ft by induction on t.
● t = x for x ∈ Vmsg: Since afactors(x) = ∅ and

avars(x) = {x}, we have Fx = afactors(xσ)×ÖDH .
● t = x for x ∈ Vpub ∪ Vfresh: Both sides are equal to the

empty set since σ well-sorted.
● t ∈ PN ∪ FN: Both sides are equal to the empty set.
● t = inv(s):

afactors(tσ)×ÖDH =AC afactors(sσ)×ÖDH

=AC Fs

=AC Ft

using the induction hypothesis and (1).
● t = g(s1, . . . , sk) for g ∉ {∗, inv, expo}: Using the

induction hypothesis and (1), we obtain

afactors(tσ)×ÖDH =AC (∪ki=1 afactors(siσ)×ÖDH )
=AC (∪ki=1Fsi)
=AC Ft.

● t = s1 ˆ s2: Using the induction hypothesis and (1), we
obtain

afactors(tσ)×ÖDH =AC afactors(s1σ)×ÖDH

=AC Fs1

=AC Ft.

● t = s1∗s2: Let J ⊆ {1,2} such that j ∈ J iff sjσ ∉ Prod.
We first show that

Fs1 ∪ Fs2 ∪ (∪j∈J {sjσ, (sjσ)−1}××ÖDH
) =AC Ft. (2)

– “⊆”: If J = ∅, then we are done since
avars(s1) ∪ avars(s2) ⊆ avars(t) and
afactors(s1) ∪ afactors(ss) ⊆ afactors(t) and
therefore Fs1 ∪ Fs2 ⊆ Ft. Now let j ∈ J
arbitrary. Then sjσ ∉ Prod and hence
sj ∉ Prod. Then there are k and u such that
sj = invk(u) and root(u) ∉ {∗, inv}. Note
that uσ ∉ Prod and u−1σ ∉ Prod. Therefore
{u,u−1} = factors(sj) ⊆ afactors(t) and

{sjσ, (sjσ)−1}××ÖDH
=AC {uσ,u−1σ}××ÖDH

⊆AC (afactors(t)σ ∖ Prod)×ÖDH

⊆AC Ft .
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– “⊇”: Since

Ft =AC (afactors(t)σ ∖ Prod)×ÖDH

∪ (∪x∈avars(t) afactors(xσ)×ÖDH )
=AC (∪ki=1 (afactors(si)σ ∖ Prod)×ÖDH )

∪ (∪ki=1 (factors(si)σ ∖ Prod)×ÖDH )
∪ (∪ki=1(∪x∈avars(t) afactors(xσ)×ÖDH ))

we have to show that for i ∈ {1,2},

(factors(si)σ ∖ Prod)×ÖDH )
⊆AC Fs1 ∪ Fs2 ∪ (∪j∈J {sjσ, (sjσ)−1}××ÖDH

) .

Let i ∈ {1,2} arbitrary. We distinguish two cases.
First, if si ∈ Prod, then factors(si) ⊆ afactors(si)
and hence

(factors(si)σ ∖ Prod)×ÖDH ⊆AC Fsi .

Second, if si ∉ Prod, then there are k and u such
that si = invk(u) and root(u) ∉ {∗, inv}. Hence
factors(si) = {u,u−1} and either uσ ∈ Prod or
not. If uσ ∈ Prod, then u−1σ ∈ Prod and hence
(factors(si)σ ∖ Prod)×ÖDH ) = ∅. If uσ ∉ Prod,
then siσ ∉ Prod and hence i ∈ J . Then we can
conclude the case with

(factors(si)σ ∖ Prod)×ÖDH

=AC {uσ,u−1σ}××ÖDH

=AC {siσ, (siσ)−1}××ÖDH

⊆AC Fs1 ∪ Fs2 ∪ (∪j∈J {sjσ, (sjσ)−1}××ÖDH
) .

Using the previous result we can now conclude the proof
as follows.

afactors(tσ)×ÖDH

=AC [t = s1 ∗ s2]

∪2
i=1 (afactors(siσ)×ÖDH ∪ factors(siσ)×ÖDH )

⊆AC [by Lemma 7]

(∪2
i=1 afactors(siσ)×ÖDH )

∪ (∪j∈J {sjσ, (sjσ)−1}××ÖDH
)

⊆AC [by IH]

Fs1 ∪ Fs2 ∪ (∪j∈J {sjσ, (sjσ)−1}××ÖDH
)

⊆AC [(2)]
Ft

Proof of Lemma 6: Let l−−[ a ]→r be an arbitrary ∗-
restricted multiset rewriting rule and σ an arbitrary ↓DH -
normal substitution. Then the following holds and l−−[ a ]→r

is therefore factor-restricted.

afactors((rσ)×ÖDH )
⊆AC [Lemma 10]

afactors(rσ)×ÖDH

=AC [Lemma 12]
(afactors(r)σ ∖ Prod)×ÖDH

∪ (∪x∈avars(r) afactors(xσ)×ÖDH )
⊆AC [no ∗ in l−−[ a ]→r]

(afactors(l)σ ∖ Prod)×ÖDH

∪ (∪x∈avars(r) afactors(xσ)×ÖDH )
⊆AC [(*)]

(afactors(l)σ ∖ Prod)×ÖDH

∪ (∪x∈avars(l) afactors(xσ)×ÖDH )
=AC [Lemma 12]

afactors(lσ)×ÖDH

=AC [(lσ)×ÖDH =AC lσ]
afactors((lσ)×ÖDH )

(*) Since l−−[ a ]→r is a protocol rule, vars(r) ⊆ vars(l)∪Vpub.
Hence avars(r) ⊆ vars(l) ∩ Vmsg = avars(l) since l does not
contain exp and all variables are accessible.

2) Normal Message Deduction: To obtain the set of
normal message deduction rules ND that accounts for ΣST

and RST , we proceed as follows. We remove the construction
rules for enc, dec, and h. We remove the deconstruction rule
for dec. Then, we add construction rules for all the function
symbols in ΣST. Finally, for each rewrite rule l → r such
that there is a position p with r = l∣p, we compute the set of
destruction rules.

We use the following function to compute the rules,
ignoring the exponentiation tags, which we will add later.

decon-rules(l, p) =
{[K↓(l∣p′)] ⋅ con-prems(l, p′)−−[]→[K↓(l∣p)]
∣ p′ strictly above p and p′ ≠ []}

The con-prems function computes the corresponding K↑-
premises and is defined as folllows.

con-prems(l, p) =
seq({K↑(l∣p′) ∣ p′ ≠ [] ∧ ∃p′′. p′′ above or equal to p

and p′′ sibling of p′})

Here, seq(S) denotes a sequence that consists of the ele-
ments of the set S. We annotate the rules with exponentiation
tags by using exp for the conclusions and using all possible
combinations of exp and noexp for the premises. For rewrite
rules where r is ground, we do not require deconstruction
rules since such an r can be constructed directly by using
the correponding construction rules.
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Example 9. Consider the rule dec(enc(x, y), y) → x. We
compute the set of deconstruction rules as follows. First
we compute decon-rules(dec(enc(x, y), y), [1,1]). The only
position p′ ≠ [] strictly above [1,1] is [1]. So the only K↓-
premise that we have to consider is K↓(enc(x, y)). Hence
the result is

{[K↓(enc(x, y))] ⋅ [K↑(y)]−−[]→[K↓(x)]}

since con-prems(dec(enc(x, y), y), [1]) = [K↑(y)].
Consider the rule a(b(c(x1, x2), x3), x4)→ x1. Then p =

[1,1,1] and the choices for p′ are [1] and [1,1]. The first
choice results in the rule

[K↓(b(c(x1, x2), x3))] ⋅ [K↑(x4)]−−[]→[K↓(x1)]

which corresponds to the adversary applying a to
b(c(x1, x2), x3) and x4 and thereby obtaining x1. The
position p′ = [1,1] results in

[K↓(c(x1, x2))] ⋅ [K↑(x3),K↑(x4)]−−[]→[K↓(x1)].

which corresponds to the adversary first applying b to
c(x1, x2) and x3 and the applying a to the result and x4. The
result after rewriting is x1 as before. These two rules cover
all the possibilities to apply the function symbol a to generate
a term that can be reduced with a(b(c(x1, x2), x3), x4)→ x1

at the topmost position.

3) Normal Dependency Graphs: To prove Lemma 1, we
require a few more lemmas and definitions. In the rest of
this section P is always assumed to be ∗-restricted.

Definition 6. We define the known messages of a dependency
graph dg as

known(dg) = {m ∣ exists conclusion fact K(m) in dg}.

We define the up-known (resp. down-known) messages of a
normal dependency graph ndg as

knownd(ndg) = {m ∣ exists conclusion fact Kdf(m) in dg}

for d =↑ (resp. d =↓). We define the known messages for a
normal dependency graph ndg as

known↕(ndg) = known↑(ndg) ∪ known↓(ndg).

We define the available state-conclusions of a dependency
graph dg as

stfacts(dg) =
{f ∣ f ∈ cfacts(dg) ∧ (∀m d e. f ≠ K(m) ∧ f ≠ Kde(m))}♯,

where cfacts(dg) denotes the consumable facts in dg. We
define the created messages of a dependency graph dg as

created(dg) = {n ∣ exists conclusion fact Fr(n) in dg}.

A normal dependency graph ndg′ = (I ′,D′) is a deduction
extension of ndg = (I,D) if I is a prefix of I ′, D ⊆ D′,
trace(ndg′) = trace(ndg), stfacts(ndg) = stfacts(ndg′), and

created(ndg) = created(ndg′). If there is a deduction ex-
tension such that a message m is known, we write m is
deducible.

In the following, we use F ↓, respectively F ↑ to denote
the construction and destruction rules for the corresponding
function symbols. For example, we use FST↓ to denote the
destruction rule for fst.

Lemma 13. For all ndg ∈ ndgraphs(P ), conclusions (i, u)
in ndg with conclusion fact f and t ∈AC afactors(f), there
is a conclusion (j, v) with conclusion fact Kde(m) in ndg
with j < i and m ∈AC {t, (t−1)×ÖDH }.

Proof: We prove by induction on normal dependency
graphs that the property holds. The property obviously holds
for ([],∅). Let ndg = (I,D) ∈ ndgraphs(P ) arbitrary,
l−−[ a ]→r ∈ ginsts(⌈P ⌉DH ∪ND∪{FRESH}), l−−[ a ]→r ↓DH -
normal, and D′ such that ndg′ = (I ⋅ [l−−[ a ]→r],D ⊎D′) ∈
ndgraphs(P ). We perform a case distinction on l−−[ a ]→r.

● If l−−[ a ]→r ∈ ginsts(FRESH), then there is nothing to
show since f = Fr(n) for a fresh name n and therefore
afactors(f) = ∅.

● If l−−[ a ]→r ∈ ginsts(⌈P ⌉DH ), then there is a substi-
tution σ that is grounding for some l′−−[ a′ ]→r′ in P
such that l−−[ a ]→r =AC (l′−−[ a′ ]→r′)σ×ÖDH . Since P
is ∗-restricted and therefore factor-restricted,

afactors(r) =AC afactors((r′σ)×ÖDH )
⊆AC afactors((l′σ)×ÖDH ) =AC afactors(l).

Hence, for all j ∈ idx(r) and t ∈AC afactors(rj), there
is k ∈ idx(l) such that t ∈AC afactors(lk). Because the
dependency must be satisfied by some conclusion in
ndg, there is a conclusion c with a conclusion fact that
is equal to lk modulo AC . We can therefore use the
induction hypothesis.

● If l−−[ a ]→r ∈ ginsts(ND), then all rules
except the multiplication rule, ISEND, COERCE,
FRESH ↑, and IRECV are of the form
F1(m1), . . . , Fk(mk)−−[]→F (f(m1, . . . ,mk)×ÖDH )
with f ≠ ∗ and mi in normal form. We can use
Lemma 10 to obtain

afactors(f(m1, . . . ,mk)×ÖDH )
⊆AC afactors(f(m1, . . . ,mk))×ÖDH

⊆AC

k

⋃
i=1

afactors(mi)

and use the induction hypothesis. For the multiplication
case, note that the only new afactors are the inputs and
their inverses and we can therefore use the induction
hypothesis too. For ISEND, COERCE, and IRECV, note
that afactors(l) =AC afactors(r) and we can therefore
use the induction hypothesis.
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Lemma 14. For all ndg ∈ ndgraphs(P ) and conclusion
facts K↓e(m) in ndg, there is a deduction extension ndg′

that contains a conclusion fact K↑e′(m′) with m =AC m′.
Furthermore, if e = exp then e′ = exp.

Proof: We have to consider two cases. First, if there is a
conclusion c′ with conclusion fact K↑e′(m′) in ndg such that
m =AC m′, then we do not have to extend ndg. Because of
N6, we know that c′ must be the conclusion of an instance
of COERCE or the construction rule for pairing or inversion.
In both cases e′ = exp. If there is no such conclusion c′ in
ndg, we use induction on m.

● If m is not a pair or inverse, we can use COERCE
directly and e = e′. Note that by N4, m is not a product.

● If m = ⟨u, v⟩, then we can obtain a deduction extension
of ndg that contains Kd1e1 (u) and Kd2e2 (v) by applying
FST↓ and SND↓ if required. If d1 =↓ or d2 =↓, we can use
the induction hypothesis to deduce K↑e3(u) and K↑e4(v).
Afterwards, we can use PAIR↑ to deduce K↑exp(⟨u, v⟩)
as required.

● The case for a = u−1 is analogous.
Note that these extensions do not violate N6. If there is a
conclusion (i,1) with fact K↓e′(m) and we add a node with
conclusion (j,1) with fact K↑e(m′) for m =AC m′, then j is
an instance of PAIR↑, INV↑, or COERCE, and i < j.
Lemma 15. Let ndg ∈ ndgraphs(P ), m ∈ known↕(ndg),
m ↓DH -normal, and m ∉ Prod, then there is a deduction
extension ndg′ of ndg with (m−1)×ÖDH ∈AC known↕(ndg′).

Proof: We distinguish whether m is an inverse or not. If
m is an inverse, then there is t such that m = t−1 and t is not
a product. Hence, (m−1)×ÖDH =AC t and t−1 ∈ known↓(ndg)
or t−1 ∈ known↑(ndg). In the first case, we can use INV↓ to
deduce t since t is not a product. In the second case, t−1

must be the conclusion of an INV↑ rule, which implies that
t ∈ known↕(ndg).

If m is no inverse, then (m−1)×ÖDH =AC m−1, as m is
no product. Due to Lemma 14, there is an extension ndg′

of ndg such that m ∈ known↑(ndg′). Hence, we can extend
ndg′ with INV↑ to deduce m−1.

Lemma 16. Let ndg ∈ ndgraphs(P ), t ↓DH -normal, and for
all m ∈AC factors(t), m ∈AC known↕(ndg) or m−1×ÖDH ∈
known↕(ndg), then there is a deduction extension ndg′ of
ndg with t ∈AC known↕(ndg′).

Proof: Proof by induction over t.
● t ∈ FN ∪ PN: Since factors(t) = {t, t−1}, t or t−1 is

known. In the first case, we are done. In the second
case, we can use Lemma 15 to obtain ndg′ where t is
known since t−1 is in normal form and not in Prod.

● t = f(u1, . . . , uk) for f ∉ {inv,∗}: Since

factors(f(u1, . . . , uk))
= {f(u1, . . . , uk), f(u1, . . . , uk)−1},

the reasoning is the same as in the previous case.
● t = u−1: Since factors(u−1) = factors(u), there is a

deduction extension ndg′ of ndg such that u is known
by the induction hypothesis. We can therefore use
Lemma 14 to deduce K↑(u) (if required) and then
deduce u−1 by applying INV↑.

● t = (u1 ∗ . . . ∗ uk) ∗ (uk+1 ∗ . . . ∗ uk+l)−1: Since
factors((u1 ∗ . . . ∗ uk) ∗ (uk+1 ∗ . . . ∗ uk+l)−1) = {ui ∣
1 ≤ i ≤ k+ l}, either ui or u−1

i is known in ndg for all i.
If only u−1

i is known, we can deduce ui by Lemma 15.
Hence, we can apply the k + l-ary multiplication rule
to u1, . . . , uk+l to deduce t.

Lemma 17. For all ndg ∈ ndgraphs(P ) and s, t ∈
known↕(ndg), there is a deduction extension ndg′ of ndg
with (s ∗ t)×ÖDH ∈ known↕(ndg′).

Proof: By Lemma 16, it is sufficient to show that for
all m ∈ factors((s ∗ t)×ÖDH ), there is a deduction extension
of ndg where m or (m−1)×ÖDH known. First, note that the
following holds for factors((s ∗ t)×ÖDH ).

factors((s ∗ t)×ÖDH )
⊆AC [Lemma 11]

{1} ∪ factors(s ∗ t)×ÖDH ∪ afactors(s ∗ t)×ÖDH

⊆AC [simplify]
{1} ∪ factors(s) ∪ factors(t) ∪ afactors(s) ∪ afactors(t)

⊆AC [Lemma 7]

{1} ∪ {s, s−1××ÖDH
} ∪ {t, t−1××ÖDH

}
∪ afactors(s) ∪ afactors(t)

Since 1, s, s−1×ÖDH , t, t−1×ÖDH , afactors(s), and afactors(t)
are already known or deducible, this means all elements of
factors((s ∗ t)×ÖDH ) are deducible.

We now prove a lemma that will be used to show that
decon-rules includes all required deconstruction rules for the
rewrite rules in RST .

Lemma 18. For all ndg ∈ ndgraphs(P ), t ∈ known↕(ndg),
and valid positions p in t such that root(t∣p′) ≠ ∗ for all p′

above or equal to p, either
(a) there is a position p̃ strictly above p such that t∣p̃ ∈AC

known↓(ndg) and t∣p′ ∈AC known↕(ndg) for all valid
positions p′ in t such that there is p′′ above or equal
to p̃ and p′ sibling of p′′, or

(b) t∣p ∈AC known↕(ndg) and t∣p′ ∈AC known↕(ndg) for
all valid positions p′ in t such that there is p′′ above
or equal to p and p′ sibling of p′′.

Proof: Let ndg and t arbitrary. We prove the statement
by induction over positions p such that root(t∣p′) ≠ ∗ for all
p′ above or equal to p. For the empty position [], (b) clearly
holds since t∣[] = t and [] has no siblings. For the induction
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step, we first assume that (a) holds for the position p. Then (b)
also holds for all valid positions p′ = p ⋅ [i] in t. Now assume
that (b) holds for p. If t∣p is up-known and not down-known,
then it cannot be the conclusion of the COERCE rule and must
be the conclusion of a construction rule. Then t∣p is either
the conclusion of a multiplication rule or a construction rule
of the form K↑e1(s1), . . . ,K↑ek(sk)−−[]→K↑e(f(s1, . . . , sk)). In
the first case, root(t∣p) = ∗ which contradicts our assumptions.
In the second case, (b) also holds for all p′ = p ⋅ [i] with
1 ≤ i ≤ k because t∣p⋅[i] = si ∈AC known↕(ndg) and the
terms at sibling positions of p′ are also known. If t∣p is
down-known and p satisfies (b), then for all valid positions
p′ = p ⋅ [i] in t, p′ satisfies (a).

Proof of Lemma 1:
Using Lemma 4 and Lemma 5, it suffices to show

{ trace(dg)
∣ dg ∈ dgraphsAC (⌈P ∪MD⌉DH ) ∧ dg ↓DH -normal}

=AC { trace(ndg) ∣ndg ∈ ndgraphs(P )}.

We prove both inclusions separately.
⊆AC : We show by induction over dependency graphs that

for all dg ∈ dgraphsAC (⌈P ∪MD⌉DH ) with dg ↓DH -normal,
there is ndg ∈ ndgraphs(P ) such that

known(dg) ⊆AC known↕(ndg) (1)
stfacts(dg) ⊆♯AC stfacts(ndg) (2)

created(dg) =AC created(ndg) (3)
trace(dg) =AC trace(ndg). (4)

This clearly holds for ([],∅). Let dg = (I,D) ∈
dgraphsAC (⌈P ∪MD⌉DH ) with dg ↓DH -normal, and ndg =
(Ĩ , D̃) ∈ ndgraphs(P ) such that (1)–(4) hold. Let ri ∈
ginsts(⌈P ∪MD⌉DH ∪{FRESH}) arbitrary such that ri ↓DH -
normal and D′ arbitrary such that dg′ = (I ⋅ [ri],D ⊎D′) ∈
dgraphsAC (⌈P ∪MD⌉DH ). Then we have to show that there
is an ndg′ ∈ ndgraphs(P ) that satisfies (1)–(4) with respect
to dg′.

We perform a case distinction on ri .
● ginsts(FRESH): Condition (3) for dg and ndg ensures

that we can extend Ĩ with ri to obtain ndg′ without
violating unique FRESH instances (DG4).

● ginsts(⌈P ⌉DH ): We append ri to Ĩ and extend D̃
with the required dependencies to obtain ndg′ which is
possible because of condition (2) for dg and ndg.

● ginsts(⌈MD⌉DH ): Let ri = l−−[ a ]→r. For all rules
except for the adversary receive, send, fresh name, and
public name rules, we have l = K(m1), . . . ,K(mn),
a = [], and r = K(m). If m = f(m1, . . . ,mn), then we
say the instance is a trivial variant of the rule. Otherwise
it is nontrivial. We must show that there is a deduction
extension ndg′ of ndg such that m ∈AC known↕(ndg′).
We can assume that m ∉AC known↕(ndg) and mi ∈AC

known↑(ndg) for 1 ≤ i ≤ n because of Lemma 14. If

m is a product, then we just have to show that m is
accessible in one of the premise facts. Then we can use
use Lemma 13 to show that all factors or their inverses
are known. Hence m is deducible by Lemma 16.

– Out(m)−−[]→K(m): We can use IRECV if m is not
a product. Since m is accessible in Out(m), the
product case is also handled.

– K(m)−−[ K(m) ]→In(m): We can use ISEND.
– Fr(n)−−[]→K(n): We can use the construction rule

for fresh names.
– Message deduction rules for 1 and public names:

We can use the construction rules for 1 and public
names.

– Trivial variant of message deduction rule for
fst, snd,pair, inv, or a function symbol from ΣST:
The corresponding instance of F ↑ can be used
since the inputs are in known↑(ndg).

– Nontrivial variant of fst or snd: We have m1 =
⟨m,m′⟩ for some m′. If m is a product, then m is
accessible in m1 and hence deducible. If ⟨m,m′⟩ ∈
known↓(ndg), then we can use the FST ↓ rule. If
⟨m,m′⟩ only in known↑(ndg), then it must be the
conclusion of a PAIR ↑ instance. But then, m is
known since it is the first premise. The reasoning
for snd is analogous to the previous case.

– Nontrivial variant of inv: Since m1 is known, m =
(m−1

1 )×ÖDH is deducible by Lemma 15.
– There are two different types of nontrivial variants

of the rules for ΣST. First, for function symbols
f and rewriting rules (f(t1, . . . , tk) → a) ∈ RST

such that a is a ground term in normal form, the
variant is K(t1), . . . ,K(tk)−−[]→K(a). The message
a can be deduced using the construction rules for
ΣST, reusing known messages where possible.
Second, for function symbols f and rewriting
rules (f(t1, . . . , tk) → ti∣p) ∈ RST , the variant is
K(t1), . . . ,K(tk)−−[]→K(ti∣p). We now consider an
arbitrary instance K(m1), . . . ,K(mk)−−[]→K(mi∣p)
of such a rule. Then m1 to mk are known in
ndg. If mi∣p is a product, then it is accessible
in mi and therefore deducible. If it is not a
product, then p is a position in mi such that
root(t∣p′) ≠ ∗ for all p′ above or equal to p. We
can therefore apply Lemma 18 to obtain (a) or (b)
for ndg, mi, and p. In case (b), mi∣p is already
known. In case (a), there is a destruction rule from
decon-rules(f(t1, . . . , tk), p) that can be applied to
obtain mi∣p.

– Trivial variant of exp: The only problematic case
occurs if for m1, there is only a K↑noexp(m1) fact
which cannot be used as first input of the EXP ↑-
rule. In this case, there must be either an EXP ↑
instance with conclusion K↑noexp(m1) or an EXP↓
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instance with conclusion K↓noexp(m1) followed by
a COERCE instance with conclusion K↑noexp(m1).
In the first case, m1 = q ˆw for some q and w and
hence m = qˆwˆm2. Since m is not in normal form,
this is impossible since all rule instances are normal-
form ground instances. In the second case, let q and
w be the first input and second input of the EXP↓
instance that produces K↓noexp(m1). Then m1 =AC

(q ˆw)×ÖDH and hence m =AC ((q ˆw) ˆm2)×ÖDH .
Since w and m2 are known in ndg, (w ∗m2)×ÖDH

is deducible by Lemma 17. Also note that K↓exp(q)
in ndg. Hence, we can apply an instance of either
EXP↑ or EXP↓ of the form

Kdexp(q),K
↑

e((w ∗m2)×ÖDH )
−−[]→Kdnoexp((q ˆ (w ∗m2))×ÖDH )

to deduce m unless it violates N7. Then
(q ˆ (w ∗m2))×ÖDH = a ˆ b for a public name a
and inp(b) ⊆ inp((w ∗m2)×ÖDH ). In this case, we
can use the construction rule for public names to
deduce a. By Lemma 3, inp((w ∗m2)×ÖDH ) is
deducible since (w ∗m2)×ÖDH is. Since inp(b) ⊆
inp((w ∗m2)×ÖDH ), we can deduce b using PAIR↑,
INV↑, and the multiplication rules. Finally, we can
use

K↑exp(a),K
↑

e(b)−−[]→K↑noexp(a ˆ b)
to deduce m.

– Nontrivial variant of exp: First, note that for all
nontrivial instances of exp, m1 = q ˆw for some q
and w. Assume that m1 is only in known↑(ndg).
Then it must be deduced by the EXP↑-rule. Hence, q
and w are known and q is not an exponentiation. We
can therefore first deduce (w ∗m2)×ÖDH and then
deduce (q ˆ (w ∗m2))×ÖDH =AC q ˆ (w ∗m2)×ÖDH

by applying the EXP↑-rule.
If m1 ∈ known↓(ndg), but the knowledge fact is
tagged with noexp, then we know that m1 was
deduced by an instance of EXP ↓. Let u and v
be the first and second premise of this instance.
Then m1 =AC (u ˆ v)×ÖDH and we can deduce
(v ∗m2)×ÖDH . Hence, we can apply an instance of
either EXP↑ or EXP↓ of the form

Kdexp(u),K
↑

e((v ∗m2)×ÖDH )
−−[]→Kdnoexp((u ˆ (v ∗m2))×ÖDH )

to deduce m unless it violates N7. Then
(u ˆ (v ∗m2))×ÖDH = a ˆ b for a public name
a and inp(b) ⊆ inp(v ∗ m2). In this case, we
can use the construction rule for public names
to deduce a. By Lemma 3, inp((v ∗m2)×ÖDH ) is
deducible since (v ∗m2)×ÖDH is. Since inp(b) ⊆
inp((v ∗m2)×ÖDH ), we can therefore deduce b

using PAIR ↑, INV ↑, and the multiplication rules.
Finally, we can use

K↑exp(a),K
↑

e(b)−−[]→K↑noexp(a ˆ b)

to deduce m.
– Variant of mult: Since m1 and m2 are known, m =

(m1 ∗m2)×ÖDH is deducible by Lemma 17.
⊇AC : We show by induction over dependency graphs that

for all ndg ∈ ndgraphs(P ), there is dg ∈ dgraphsAC (⌈P ∪
MD⌉DH ) with dg ↓DH -normal and

known(ndg) ⊆AC known↕(dg) (1)
stfacts(ndg) ⊆♯AC stfacts(dg) (2)

created(ndg) =AC created(dg) (3)
trace(ndg) =AC trace(dg). (4)

This clearly holds for ([],∅). Let ndg = (I,D) ∈
ndgraphs(P ) and dg = (Ĩ , D̃) ∈ dgraphsAC (⌈P ∪MD⌉DH )
with dg ↓DH -normal such that (1)–(4) hold. Let ri ∈
ginsts(⌈P ⌉DH ∪ ND ∪ {FRESH}) arbitrary such that ndg′ =
(I ⋅ [ri],D ⊎ D′) ∈ ndgraphs(P ). Then we have to show
that there is dg′ ∈ dgraphsAC (⌈P ∪MD⌉DH ) with dg′ =AC

dg′×ÖDH that satisfies (1)–(4) with respect to ndg′.
We perform a case distinction on l−−[ a ]→r.
● ginsts(FRESH): Condition (3) for ndg and dg ensures

that we can extend Ĩ with ri to obtain dg′ without
violating unique FRESH instances (DG4).

● ginsts(⌈P ⌉DH ): We append ri to Ĩ and extend D̃ with
the required dependencies to obtain dg′ which is possible
because of condition (2) for ndg and dg.

● ginsts(ND): For every rule in ND except for MULT ↑
and some of the destruction rules for ΣST, there is
a corresponding variant in ⌈MD⌉DH . For a MULT ↑
instance

K↑e1(t1), . . . ,K
↑

ek
(tk),K↑ek+1(tk+1), . . . ,K↑el(tl)

−−[]→K↑mult(t1 ∗ . . . ∗ tk ∗ (tk+1 ∗ . . . ∗ tl)−1),

the messages ti are known in dg. Hence, we can use
mult instances

K(t1 ∗ . . . ∗ tj),K(tj+1)−−[]→K(t1 ∗ . . . ∗ tj ∗ tj+1)

and inv instances together with mult instances

K(t1 ∗ . . . ∗ tk ∗ (tk+1 ∗ . . . ∗ tk+j)−1),K(t−1
k+j+1)

−−[]→K(t1 ∗ . . . ∗ tk ∗ (tk+1 ∗ . . . ∗ tk+j ∗ tk+j+1)−1).

The destruction rules for a function symbol f ∈ ΣST and
a rewriting rule (f(t1, . . . , tk) → ti∣p) ∈ RST can be
simulated with the variant K(t1), . . . ,K(tk)−−[]→K(ti∣p)
and the construction rules for function symbols that
occur in ti.
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4) Properties of Normal Dependency Graphs: We use the
extended set of deconstruction rules NDdestr that consists of
the deconstruction and exponentiation rules from Figure 9
including the deconstruction rules for ΣST. We partition
the construction rules into the implicit construction rules
NDc-impl consisting of the pair, inversion, and multiplication
construction rules and the explicit construction rules NDc-expl

consisting of the remaining construction rules (including
those for ΣST) and the COERCE rule.

Lemma (Justification of Lemma 2 on page 9). For every
premise p with fact K↓e(t) of dg, there is a node i in dg such
that Ii ∈ ginsts(IRECV) and (i,1)⇢dg p.

Proof: By induction over the length of the rewriting
sequences of the normal dependency graphs for P .

The case for ([],∅) is trivial.
Assume there is a normal dependency graph dg = (I,D)

for P that satisfies the induction hypothesis and there is
a rule instance ri ∈ ginsts(⌈P ⌉DH ∪ ND ∪ {FRESH}) and
a set of dependencies D′ disjoint from D such that dg′ =
(I ⋅ [ri ],D ⊎D′) is also a normal dependency graph for P .
We show that dg′ also satisfies our claim.

The only non-trivial case stems from premises p with fact
K↓e(t) of dg′ that are not premises of dg. Due to DG1-2
and the structure of the rules in ND, there is a conclusion
(i,1) with fact K↓e1(m) in dg such that (i,1) ↣ p ∈ D′

and either Ii ∈ ginsts(IRECV) or Ii ∈ ginsts(NDdestr). If
Ii ∈ ginsts(IRECV), then we have (i,1) ⇢dg′ p due to
(a) in the definition of ⇢dg′ , which concludes this case.
If Ii ∈ ginsts(NDdestr), then (i,1) is a premise of dg and
there is a message t′ such that K↓e2(t

′)). Applying the
induction hypothesis yields a node index i′ of dg such
that Ii′ ∈ ginsts(IRECV) and (i′,1) ⇢dg (i,1). Its easy to
see that that we can also extend ⇢dg at the back. Hence,
extending (i′,1)⇢dg (i,1) with (i,1)↣ p yields a witness
for (i′,1)⇢dg′ p, which concludes the proof.

Lemma (Justification of Lemma 3 on page 9). For every
premise p in dg with fact K↑e(t) and every message m ∈AC

inp(t) with m ≠AC t, there is a conclusion (i,1) in dg with
fact K↑e′(m′) such that Ii ∈ ginsts(NDc-expl), m′ =AC m, and
(i,1)↠dg p.

Proof: By induction over the length of the rewriting
sequences of the normal dependency graphs for P .

The case for ([],∅) is trivial.
Assume there is a normal dependency graph dg = (I,D)

for P that satisfies the induction hypothesis and there is
a rule instance ri ∈ ginsts(⌈P ⌉DH ∪ ND ∪ {FRESH}) and
a set of dependencies D′ disjoint from D such that dg′ =
(I ⋅ [ri ],D ⊎D′) is also a normal dependency graph for P .
We show that dg′ also satisfies our claim.

The only non-trivial case stems from premises p with fact
K↑e(t) in dg′ that are not premises of dg and messages m
such that m ∈AC inp(t) and m ≠AC t. Due to DG1-2 and the

structure of the rules in ND, there is a conclusion (i,1) with
fact K↑e1(m

′)) in dg such that (i,1)↣ p ∈D′ and m′ =AC t.
As inp(m′) =AC inp(t), we have that m ∈AC inp(m′)

and m ≠AC m′. Hence, m′ is either a pair, an inverse, or
a product. In every case, the structure of the rules in ND
and N2-4 imply that Ii ∈ ginsts(NDc-impl). Hence, there are
v, e2, and t′ such that (i, v) is a premise with fact K↑e2(t

′)
in dg. Moreover, m ∈AC inp(t′) because of the structure of
the rules in NDc-impl and m ∈AC inp(m′). We make a case
distinction on whether m =AC t′.

If m =AC t′, then there is a conclusion (j,1) with fact
K↑e2(t

′) modulo AC in dg such that (j,1) ↣ (i, v) ∈ D.
Moreover, Ij ∈ ginsts(NDconstr) due to the structure of the
rules in ND. Hence, (j,1) ↠dg p due to case (a) of the
definition of ↠dg, which concludes this case.

If m ≠AC t′, then applying the induction hypothesis to
K↑e2(t

′) and m ∈AC inp(t′) yields a conclusion (i′,1) with
fact K↑e2(s)) in dg such that s =AC m, Ii′ ∈ ginsts(NDconstr),
and (i′,1) ↠dg (i, v). Extending (i′,1) ↠dg (i, v) with
(i,1) ↣ p yields (i′,1)↠dg p according to case (b) of the
definition of ↠dg, which concludes this proof.

E. Proofs for Section VI

In this section, we first give the proof of Theorem 1
from Subsection VI-A. Afterwards, we give the proofs of
Theorems 2 and 3 from Section VI.

Before we can prove Theorem 1, we prove some results
about the semantics of formulas.

Lemma 19. For all equational theories E, traces tr , and
closed formulas φ, tr ⊧E φ if and only if tr ⊧E φ.

Proof: We prove the lemma by induction on the number
of silent actions in tr . If there are no silent actions in tr ,
then tr = tr and the statement holds trivially. If tr contains
n silent actions and the first silent action occurs at position k,
then it suffices to show that tr ⊧E φ if and only if tr ′ ⊧E φ
for tr ′ = tr1, . . . , trk−1, trk+1, . . . , tr ∣tr ∣ since we can then
use the induction hypothesis on tr ′.

To prove this, we first define the function G̃ that will be
used to transform valuations for tr to valuations for tr ′.

G̃(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u if u ≤ k − 1
(k − 1 + u)/2 if k − 1 < u < k + 1
u − 1 if u ≥ k + 1

G̃ accounts for the removal of the k-th element of tr as can
be seen in the following figure. As can be seen in Figure 18,
G̃ is strictly increasing and a bijection.

We define G as the function that is equal to G̃ on Q and the
identity onM. We now prove that for all formulas φ and for
all valuations θ, (tr , θ) ⊧E φ if and only if (tr ′,G○θ) ⊧E φ.
This is sufficient since G is a bijection. We use induction
over formulas to prove the statement. Let θ be arbitrary, then
we have to consider the following cases.
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Q

G̃

k − 1 k k + 1

Qk − 1 k k + 1

. . . . . .. . .. . .

Figure 18. Function graph of G̃.

f@i:

(tr , θ) ⊧E f@i

iff θ(i) ∈ idx(tr) and fθ ∈E trθ(i)

iff
G(θ(i)) ∈ idx(tr ′) and

f(G ○ θ) ∈E tr ′G(θ(i))

[∗]

iff (tr ′,G ○ θ) ⊧E f@i

(*) First, note that fθ = f(G○θ) since G is the identity
on M. Then perform a case distinction on θ(i). If
θ(i) ∉ N, then G(θ(i)) ∉ N and therefore θ(i) ∉
idx(tr) and G(θ(i)) ∉ idx(tr ′). If θ(i) ∈ N ∖ {k},
then G(θ(i)) ∈ N and trθ(i) = trG(θ(i)). If θ(i) = k,
then trθ(i) = ∅ and G(θ(i)) ∉ idx(tr ′).

i ⋖ j:

(tr , θ) ⊧E i ⋖ j
iff θ(i) < θ(j)
iff G(θ(i)) < G(θ(j)) [G∣Q strictly increasing]
iff (tr ′,G ○ θ) ⊧E i ⋖ j

i ≐ j:
Directly follows from the fact that G is a bijection
on Q.

t ≈ s:
Directly follows from the fact that G is the identity
on M.

∃x.φ:

(tr , θ) ⊧E ∃i.φ

iff
there is u such that

(tr , θ[i↦ u]) ⊧E φ

iff
there is u such that

(tr ′,G ○ (θ[i↦ u])) ⊧E φ
[by IH]

iff
there is u′ such that

(tr ′, (G ○ θ)[i↦ u′]) ⊧E φ
[u′ = G(u)]

iff (tr ′,G ○ θ) ⊧E ∃i.φ

φ ∧ ψ, ¬φ:
Trivially follow from induction hypothesis.

Thanks to the above Lemma, we can consider trace sets
TR with TR = traces(P ) for reasoning about the security of
a protocol P .

To evaluate guarded trace properties modulo AC , we prove
the following theorem which relies on the fact that guarded
trace properties only contain variables and public names.

Lemma 20. Let tr be a trace and φ a guarded trace property,
then

tr ⊧EDH
φ iff tr↓DH ⊧AC φ .

To prove Lemma 20, we require the following lemma.

Lemma 21. Let φ arbitrary such that for all terms t that
occur in φ, t ∈ V ∪ PN, tr arbitrary, and θ and ξ valuations
such that the following holds for all x, y ∈ fvars(φ):
(1) θ(x) ∈AC St(tr) ∪ PN iff ξ(x) ∈AC St(tr) ∪ PN
(2) If θ(x) ∈AC St(tr) ∪ PN, then ξ(x) =AC θ(x).
(3) θ(x) =AC θ(y) iff ξ(x) =AC ξ(y)
(4) θ∣Vtemp = ξ∣Vtemp

Then (tr , θ) ⊧AC φ if and only if (tr , ξ) ⊧AC φ.

Proof: We prove this by induction on formulas. Let tr
arbitrary and θ and ξ such that (1)–(4) hold. We have to
consider the following cases.
F (t1, . . . , tk)@i (for ti ∈ Vmsg ∪ PN):

(tr , θ) ⊧AC F (t1, . . . , tk)@i
iff θ(i) ∈ idx(tr) and F (t1, . . . , tk)θ ∈AC trθ(i)

iff ξ(i) ∈ idx(tr) and F (t1, . . . , tk)ξ ∈AC trξ(i) [∗]
iff (tr , ξ) ⊧AC F (t1, . . . , tk)@i

(*) First, note that θ and ξ are equal on temporal
variables because of (4) and hence θ(i) = ξ(i). To see
that F (t1, . . . , tk)θ ∈AC trθ(i) iff F (t1, . . . , tk)ξ ∈AC

trξ(i), we perform a case distinction. If there is a
variable x such that x = tj for some j and θ(x) ∉AC

St(tr), then ξ(x) ∉AC St(tr) because of (1). Hence
both facts cannot be elements of the trace. If θ(x) ∈AC

St(tr) for all such variables then the same holds for
ξ(x) because of (1) and hence θ and ξ agree on these
variables because of (2).

i ⋖ j, i ≐ j:
Holds because of (4).

x ≈ y:

(tr , θ) ⊧AC x ≈ y
iff θ(x) =AC θ(y)
iff ξ(x) =AC ξ(y) [because of (3)]
iff (tr , ξ) ⊧AC x ≈ y

n1 ≈ n2 (for n1, n2 ∈ PN):
Independent of θ and ξ.

x ≈ n or n ≈ x (for n ∈ PN):
θ(x) =AC n iff ξ(x) =AC n because of (1) and (2).
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∃x.φ:

(tr , θ) ⊧AC ∃x.φ
iff exists u such that (tr , θ[x↦ u]) ⊧AC φ

iff exists u′ such that (tr , ξ[x↦ u′]) ⊧AC φ [∗]
iff (tr , θ) ⊧AC ∃x.φ

(*) We choose u′ such that θ′ = θ[x ↦ u] and
ξ′ = ξ[x ↦ u′] satisfy (1)–(4) and we can use the
induction hypothesis. If u ∈ St(tr) ∪ PN or u ∈ Q
we set u′ = u and (1)–(4) are obviously satisfied. In
all the remaining cases, x is of sort msg or fresh. If
there is y ∈ fvars(φ) ∖ {x} with θ(y) =AC u, we set
u′ = ξ(y) to preserve (3). (1), (2), and (4) are also
satisfied. If neither is the case, then we can set u′ to
an arbitrary new message of the right sort that is not
in ξ(fvars(φ)) ∪ St(tr) ∪ PN. Then (1) and (2) hold
because they hold for θ and ξ and both u and u′ are not
in St(tr) ∪ PN. (3) holds because θ′(x) ≠AC θ′(y)
for all y ∈ fvars(φ) ∖ {x} and the same holds for
ξ′. (4) holds obviously since θ∣Vtemp = θ′∣Vtemp and
ξ∣Vtemp = ξ′∣Vtemp .

φ ∧ ψ, ¬φ: Trivially follow from induction hypothesis.

Proof of Lemma 20: We show that for all all valuations
θ and for all φ such that for all terms t that occur in φ,
t ∈ V ∪ PN ,

(tr , θ) ⊧EDH
φ iff ( tr↓DH , θ↓DH ) ⊧AC φ.

We prove this by induction on formulas. Let θ arbitrary, then
we have to consider the following cases.
F (t1, . . . , tk)@i (for ti ∈ Vmsg ∪ PN):

(tr , θ) ⊧EDH
F (t1, . . . , tk)@i

iff θ(i) ∈ idx(tr) and

F (t1, . . . , tk)θ ∈EDH
trθ(i)

iff θ(i) ∈ idx( tr↓DH ) and

F (t1, . . . , tk)(θ↓DH ) ∈AC ( tr↓DH )θ(i)
iff ( tr↓DH , θ↓DH ) ⊧AC F (t1, . . . , tk)@i

i ⋖ j, i ≐ j:
Directly follows from θ∣Vtemp = (θ↓DH )∣Vtemp .

x ≈ y:

(tr , θ) ⊧EDH
x ≈ y

iff θ(x) =EDH
θ(y)

iff θ(x)×ÖDH =AC θ(x)×ÖDH

iff ( tr↓DH , θ↓DH ) ⊧AC x ≈ y

n1 ≈ n2 (for n1, n2 ∈ PN):
n1 =AC n2 iff n1 =EDH

n2.
x ≈ n or n ≈ x (for n ∈ PN):

θ(x) =EDH
n iff θ(x)×ÖDH =AC n.

∃x.φ: We prove both directions separately.

(tr , θ) ⊧EDH
∃x.φ

implies exists u such that

(tr , θ[x↦ u]) ⊧EDH
φ

implies exists u such that [IH]
( tr↓DH , (θ[x↦ u])×ÖDH ) ⊧AC φ

implies exists u′ such that [u′ = u↓DH ]
( tr↓DH , θ↓DH [x↦ u′]) ⊧AC φ

implies ( tr↓DH , θ↓DH ) ⊧AC ∃x.φ

( tr↓DH , θ↓DH ) ⊧AC ∃x.φ
implies exists u such that

( tr↓DH , θ↓DH [x↦ u]) ⊧AC φ

implies exists u′ such that

(tr , θ↓DH [x↦ u′]) ⊧AC φ

and u′ ↓DH -normal [∗]
implies exists u′ such that

(tr , θ[x↦ u]) ⊧EDH
φ [IH]

implies (tr , θ) ⊧EDH
∃x.φ

(*) If u is ↓DH -normal or in Q, then we set u′ =
u. In all the remaining cases, x is of sort msg. For
these cases, we choose u′ such that conditions (1)–(4)
from Lemma 21 are satisfied for θ↓DH [x↦ u] and
θ↓DH [x↦ u′] and u′ ↓DH -normal. We can therefore
choose an arbitrary u′ such that u′ ∉AC ran(θ↓DH )∪
St(tr) ∪ PN and u′ ↓DH -normal. Since u is not in
St(tr)∪PN, (1) and (2) are satisfied. Since u,u′ ∉AC

ran(θ↓DH ), (3) is also satisified. Since x ∉ Vtemp, (4)
is also satisified.

φ ∧ ψ, ¬φ: Trivially follows from induction hypothesis.

Theorem (Justification of Theorem 1). For every ∗-restricted
protocol P and every guarded trace property ϕ,

P ⊧EDH
ϕ iff {trace(dg) ∣ dg ∈ ndgraphs(P )} ⊧AC ϕ .

Proof:

P ⊧EDH
ϕ

iff traces(P ) ⊧EDH
ϕ [unfold def.]

iff traces(P ) ⊧EDH
ϕ [Lemma 19]

iff traces(P )×ÖDH ⊧AC ϕ [Lemma 20]
iff {trace(dg) ∣ dg ∈ ndgraphs(P )} ⊧AC ϕ [Lemma 1]
iff {trace(dg) ∣ dg ∈ ndgraphs(P )} ⊧AC ϕ [Lemma 19]
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In the completeness proof for the constraint reduction
rule N1, we require the following lemma to justify that a
non-↓DH -normal term cannot become a ↓DH -normal term
under substitution.

Lemma 22. For every valuation θ and every t ∈M, if t is
not ↓DH -normal, then tθ is not ↓DH -normal.

Proof: If t is reducible, then there is a position p in t
that AC -matches the left-hand side of a rewriting rule in
DH . Hence, tθ∣p is also reducible, as the same rule also
AC -matches tθ at position p.

In the completeness proof for the constraint reduction
rule N6, we require an additional lemma, which intu-
itively states that every input component of a K↑-premise
is a K↑-conclusion of some earlier node. To state this
lemma, we define the extended input components of a
term t as einp(t), such that einp(t−1) = {t−1} ∪ einp(t),
einp(⟨t1, t2⟩) = {⟨t1, t2⟩} ∪ einp(t1) ∪ einp(t2), einp(t1 ∗
t2) = {t1 ∗ t2} ∪ einp(t1) ∪ einp(t2), and einp(t) = {t}
otherwise. The difference between einp(t) and inp(t) is that
einp(t) additionally retains the deconstructed terms. Hence,
inp(t) ⊆ einp(t) for every term t.

Lemma 23. For every premise (j, v) in dg with fact K↑e(t)
and every message m ∈AC einp(t) there is a conclusion (i,1)
in dg with fact K↑e′(m′) such that i < j and m′ =AC m.

Proof: By induction over the length of the rewriting
sequences of the normal dependency graphs for P .

The case for ([],∅) is trivial.
Assume there is a normal dependency graph dg = (I,D)

for P that satisfies the induction hypothesis and there is
a rule instance ri ∈ ginsts(⌈P ⌉DH ∪ ND ∪ {FRESH}) and
a set of dependencies D′ disjoint from D such that dg′ =
(I ⋅ [ri ],D ⊎D′) is also a normal dependency graph for P .
We show that dg′ also satisfies our claim.

The only non-trivial case stems from premises (j, v) with
fact K↑e(t) in dg′ that are not premises of dg and messages m
such that m ∈AC einp(t). Due to DG1-2, there is a conclusion
(i,1) with fact K↑e1(t

′) in dg such that (i,1)↣ (j, v) ∈D′,
i < j, and t′ =AC t. We distinguish whether m =AC t′.

If m =AC t′, then the proof is complete.
If m ≠AC t′, then we have Ii ∈ ginsts(NDconstr) due to the

structure of the rules in ND, properties N2-4, and m ∈AC

einp(t′). Thus, there exists u, e′, and m′ such that (i, u) is
a premise of dg with fact K↑e′(m′) and m ∈ einp(m′). We
can thus apply the induction hypothesis to obtain k, e′′, and
m′′ such that (k,1) is a conclusion in dg with fact K↑e′′(m′′)
and k < i and m =AC m′′. As k < i < j, this concludes the
proof.

Theorem (Justification of Theorem 2 on page 13). The
constraint reduction relation ↝P is sound and complete;
i.e., for every Γ↝P {Γ1, . . . ,Γn}, the set of P -solutions of
Γ is equal to the union of the sets of P -solutions of all Γi

for 1 ≤ i ≤ n.

Proof: We first prove the completeness of all rules from
Figure 10 and then their soundness.

Note that several constraint reduction rules require freshly
renamed sets of rules. Formally, a renaming of a rule ru
fresh with respect to a constraint system Γ is a well-sorted
bijection ρ ∶ V → V such that vars(ru )ρ ∩ vars(Γ) = ∅.
Identifying ρ with its homomorphic extension, the freshly
renamed rule is then (ru )ρ.

Completeness: Let M = (dg, θ) be an arbitrary P -model
of some constraint system Γ matching the left-hand-side
and satisfying the side-condition of one of the rules from
Figure 10. Let dg = (I,D). Let M = (trace(dg), θ). We
perform a case distinction on the rules.

S≈ From the rule’s side-conditions, we have M ⊧AC

t1 ≈ t2. Hence, t1θ =AC t2θ. Therefore, there exists
σ ∈ unify

AC
(t1 ≈ t2) and a valuation ξ such that

θ(x) =AC (σ(x))ξ for every x ∈ dom(σ) and θ(x) =
ξ(x) for every x ∈ vars(Γ)∖dom(σ). Such a ξ exists
because fresh variables in σ are not in vars(Γ) and
unify

AC
(t1 ≈ t2) is a complete set of unifiers for t1

and t2. The structure (dg, ξ) is a P -model of Γσ,
as ⊫ ensures that the valuation is applied to every
variable.

S≐ From the rule’s side-conditions, we have M ⊧AC i ≐ j.
Hence, θ(i) = θ(j). Thus, M is also a P -model of
Γ{i/j}, as ⊫ ensures that the valuation is applied to
every variable.

S@ From the rule’s side-condition, we have M ⊧AC f@i.
Hence, θ(i) ∈ idx(I) and there is k with fθ =AC

acts(Iθ(i))k. Note that I ∈ (ginsts(⌈P ⌉DH ∪ ND ∪
{FRESH}))∗. Only rules in ⌈P ⌉DH ∪ {ISEND} have
a non-empty sequence of actions. Hence, there exists
ru ∈ ⌈P ⌉DH ∪ {ISEND} and a grounding substitution
σ such that Iθ(i) = (ru )σ.
We construct a model of the constraint system

Γ′ = {i ∶ (ru )ρ, f ≈ acts((ru )ρ)k} ∪ Γ

where ρ is a renaming of ru fresh with respect to Γ.
The constraint system Γ′ occurs in the right-hand-side
of S@. Moreover, (dg, θ′) with

θ′ = θ[ρ(x)↦ σ(x)]x∈dom(σ)

is a model of Γ as only fresh variables are updated. It
is also a P -model of i ∶ (ru )ρ and f ≈ acts((ru )ρ)k.
Thus, it is a P -model of Γ′, which concludes this
case.

S� Completeness follows trivially from the definition of
⊫ and the definition of ⊧AC for �.

S¬,≈ From the rule’s side-condition, we have M ⊧AC

¬(t ≈ t). Thus, tθ =AC tθ must not hold, which
is a contradiction and concludes this case.
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S¬,≐ From the rule’s side-condition, we have M ⊧AC

¬(i ≐ i). Thus, θ(i) = θ(i) must not hold, which
is a contradiction and concludes this case.

S¬,@ From the rule’s side-condition, we have M ⊧AC

¬(f@i). Moreover, there is ri such that (i ∶ ri ) ∈ Γ
and f ∈ acts(ri ). Hence, θ(i) ∈ idx(I) and Iθ(i) =AC

ri θ. Moreover, fθ ∈ acts(Iθ(i)). Thus M ⊧AC f@i,
which is a contradictions and concludes this case.

S¬,⋖ From the rule’s side-condition, we have M ⊧AC ¬(j ⋖
i). Hence, θ(j) < θ(i) must not hold, which implies
that either p θ(i) < θ(j) or θ(i) = θ(j). Thus, M is
a model of one of the constraint systems in the rule’s
right-hand side, which concludes this case.

S∨ Completeness follows trivially from the definition of
⊫ and the definition of ⊧AC for ∨.

S∧ Completeness follows trivially from the definition of
⊫ and the definition of ⊧AC for ∧.

S∃ From the rule’s side-condition, we have M ⊧AC

∃x∶s. φ. Hence, there is w ∈ Ds such that (dg, θ[x↦
w])⊫ φ. It holds that y is fresh and of sort s. Thus,
(dg, θ[y ↦ w]) is a P -model of {φ{y/x}}∪Γ which
concludes this case.

S∀ It is easy to see that, for every trace formula χ,
M ⊧AC (∀x⃗.χ) implies M ⊧AC χσ for every
substitution σ with dom(σ) = set(x⃗). Hence, for the
substitution σ with dom(σ) = set(x⃗) from the rule’s
side-condition, we have that M ⊧AC (f@i)σ⇒ φσ.
Moreover, there is (j ∶ l−−[ a ]→r) ∈ Γ such that
j = σ(i) and fσ ∈AC a. Moreover, θ(j) ∈ idx(I) and
Iθ(j) =AC lθ−−[ aθ ]→rθ. Therefore, M ⊧AC (f@i)σ.
Thus, M ⊧AC ψσ, which concludes this case.

Ulbl From the rule’s side-condition, we have θ(i) ∈ idx(I),
ri θ =AC Iθ(i) =AC ri ′θ. Hence, (dg, θ) ⊫ ri ≈ ri ′,
which concludes this case.

DG11 From the rule’s side condition, we obtain an i such that
i ⋖Γ i. We can prove by induction over the transitive
closure in the definition of ⋖Γ that i ⋖Γ i′ implies
θ(i) < θ(i′). Hence, i ⋖Γ i is a contradiction, which
concludes this case.

DG12 From the rule’s side-condition, we have cθ ↣ pθ ∈D,
i ∶ ri ∈ Γ, j ∶ ri ′ ∈ Γ, u ∈ idx(concs(ri )), and
v ∈ idx(prems(ri ′)) such that c = (i, u), p = (j, v),
concs(ri )u = f and prems(ri ′)v = f ′. Hence,
θ(i), θ(j) ∈ idx(I), ri θ =AC Iθ(i), and ri ′θ =AC

Iθ(j). Due to DG1, fθ =AC concs(Iθ(i))u =AC

prems(Iθ(j))v =AC f ′θ. Thus (dg, θ) ⊫ f ≈ f ′,
which concludes this case.

DG21 From the rule’s side-condition, we have (θ(i), v)↣
pθ ∈ D and (θ(j), u) ↣ pθ ∈ D. As incoming
edges are unique (DG2), (θ(i), v) = (θ(j), u), which
concludes this case.

DG22,P From the rule’s side-condition, we have j ∶ ri ′ ∈ Γ, v ∈
idx(prems(ri ′)) such that p = (j, v), prems(ri ′)v = f
and f is not a K↑-fact or K↓-fact. Hence, θ(j) ∈

idx(I), ri ′θ =AC Iθ(j), and prems(Iθ(j))v =AC

fθ. From DG1-2, we obtain k ∈ idx(I) and u ∈
idx(concs(Ik)) such that (k, u)↣ (θ(j), v) ∈D and
concs(Ik)u =AC fθ. As f is not a K↑-fact or K↓-
fact and Ik ∈ ginsts(⌈P ⌉DH ∪ND ∪ {FRESH}), there
is ru ∈ ⌈P ⌉DH ∪ {ISEND, FRESH} and a grounding
substitution σ such that Ik = ru σ.
We construct a model of the constraint system

Γ′ = {i ∶ ru ρ, (i, u)↣ p} ∪ Γ

where ρ is a fresh renaming of ru with respect to Γ.
The constraint system Γ′ occurs in the right-hand-side
of the constraint reduction rule. The structure

(dg, θ[i↦ k][ρ(x)↦ σ(x)]x∈dom(σ))

is a P -model of Γ as only the valuation of fresh
variables is changed. It is also a model of i ∶ ru ρ and
(i, u)↣ p. Thus, it is a model of Γ′.

DG3 From the rule’s side-condition, we have cθ ↣
(θ(i), v) ∈ D and cθ ↣ (θ(j), u) ∈ D. Moreover,
there is i ∶ ri ∈ Γ such that u ∈ idx(concs(ri )) and
ri u is a linear fact. Hence, θi ∈ idx(I), Iθ(i) =AC ri θ,
and (ri θ)u is also a linear fact. Due to DG3, linear
conclusions have at most one outgoing edge in dg.
Hence, (θ(i), v) = (θ(j), u) which concludes this
case.

DG4 From the rule’s left-hand-side, we have
θ(i), θ(j) ∈ idx(I), Iθ(i) =AC (−−[]→Fr(mθ)),
and Iθ(j) =AC (−−[]→Fr(mθ)). Due to P3, we thus
have Iθ(i), Iθ(j) ∈AC ginsts(FRESH). Due to DG4,
we have θ(i) = θ(j), which concludes this case.

N1 From the rule’s side-condition, we have (i ∶ ri ) ∈ Γ
such that ri is not ↓DH -normal. Hence, θ(i) ∈ idx(I)
and ri θ =AC Iθ(i). Due to Lemma 22, Iθ(i) is not
↓DH -normal, which contradicts property N1 and thus
concludes this case.

N5,6 From the rule’s side-condition, we have i ∶ ri ∈ Γ,
and i′ ∶ ri ′ ∈ Γ such that Kde(t) =AC concs(ri )1, and
Kd

′

e′ (t) =AC concs(ri ′)1. Hence, θ(i), θ(i′) ∈ idx(I),
ri θ =AC Iθ(i), ri

′θ =AC Iθ(i′), concs(Iθ(i))1 =AC

Kde(tθ), and concs(Iθ(i′))1 =AC Kd
′

e′ (tθ). Moreover,
from the rule’s side-condition, we also have that
either d = d′ or {i, j} ∩ {k ∣∃ri ∈ insts({PAIR↑, INV↑
,COERCE}). (k ∶ ri ) ∈ Γ} = ∅. We make a case
distinction whether d = d′.
If d = d′, then we have (θ(i),1) = (θ(i′),1) from N5,
which concludes this subcase.
If d ≠ d′, then {i, j} ∩ {k ∣∃ri ∈ insts({PAIR ↑, INV ↑
,COERCE}). (k ∶ ri ) ∈ Γ} = ∅, which implies
{ri θ, ri ′θ} ∩ ginsts({COERCE, PAIR ↑, INV ↑}) = ∅.
This contradicts property N6 of normalized depen-
dency graphs and concludes this subcase and thus the
whole case.
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N6 From the rule’s side-condition, we obtain i ∶ ri ∈ Γ,
j ∶ ri ′ ∈ Γ, u ∈ idx(concs(ri )), v ∈ idx(prems(ri ′))
and m ∈AC inp(t) such that K↓e(m) =AC concs(ri )u
and K↑e′(t) =AC prems(ri ′)v. Hence, θ(i), θ(j) ∈
idx(I), ri θ =AC Iθ(i), and ri ′θ =AC Iθ(j). Moreover,
concs(Iθ(i))u =AC K↓e(mθ) and prems(Iθ(j))v =AC

K↑e′(tθ).
Note that m ∈AC inp(t) implies that m ∈AC einp(t),
which in turn implies that mθ ∈AC einp(tθ). Thus, we
can apply Lemma 23, which yields a conclusion (k,1)
with fact K↑e1(m

′) such that m′ =AC mθ and k < θ(j).
Due to N6, we have θ(i) < k. Thus θ(i) < θ(j) and
(dg, θ)⊫ i ⋖ j, which concludes this case.

N7 From the rule’s side-condition, we have

(i ∶ K↓exp(s1),K↑e(t1)−−[]→K↓noexp(s2 ˆ t2)) ∈ Γ

such that s2 is of sort pub and inp(t2) ⊆ inp(t1).
Thus, θ(i) ∈ idx(I) and

Iθ(i) =AC K↓exp(s1θ),K↑e(t1θ)−−[]→K↓noexp(s2θ ˆ t2θ) .

Moreover, s2θ is of sort pub and inp(t2θ) ⊆ inp(t1θ),
due to inp(t2) ⊆ inp(t1). This contradicts N7, which
concludes this case.

DG22,↑e Analogous to DG22,P exploiting that {m} = inp(m)
and m non-trivial imply that m is provided by a
construction rule in NDc-expl.

DG22,↑i From the rule’s side-condition, we have j ∶ ri ∈ Γ,
v ∈ idx(prems(ri )), s ∈ T , and m ∈ inp(s) ∖
({s} ∪ PN ∪ ∪{1} ∪ Vmsg ∪ Vpub) such that p = (j, v)
and prems(ri )v = K↑e(s). Hence, θ(j) ∈ idx(I)
and ri θ =AC Iθ(j). Moreover, prems(Iθ(j))v =AC

K↑e(sθ) and mθ ∈AC inp(sθ)∖ {sθ}. From Lemma 3,
we obtain k ∈ idx(I), ru ∈ NDc-expl, a substitution
σ grounding for ru , e′, and m ∈ M such that
Ik = ru σ, concs(ru σ)1 = K↑e′(m′), mθ =AC m′, and
(k,1)↠dg (θ(j), v). We construct a P -model for the
constraint system

Γ′ = {i ∶ lρ−−[]→K↑e′(tρ), tρ ≈m, (i,1)↠ p} ∪ Γ

where ru = l−−[]→K↑e′(t) and ρ is a fresh renaming for
ru with respect to Γ. The constraint system Γ′ occurs
in the right-hand-side of the constraint reduction rule.
The structure

(dg, θ[i↦ k][ρ(x)↦ σ(x)]x∈dom(σ))

is a model of i ∶ lρ−−[]→K↑e′(tρ), tρ ≈ m, (i,1) ↠dg

p, and Γ, as only fresh variables are renamed. This
concludes this case.

DG22,↓ From the rule’s side-condition, we have j ∶ ri ∈
Γ, v ∈ idx(prems(ri )) such that p = (j, v) and
prems(ri )v = K↓e(m). Hence, θ(j) ∈ idx(I) and
ri θ =AC Iθ(j). Moreover, prems(Iθ(j))v =AC

K↓e(mθ). From Lemma 2, we obtain k ∈ idx(I) such

that Ik = (IRECV)σ for some grounding grounding
substitution σ and (k,1)⇢dg (θ(j), v). The structure

(dg, θ[i↦ k][y ↦ σ(x)]) ,

where x is the variable x from the IRECV rule, is a
model of i ∶ Out(y)−−[]→K↓exp(y), (i,1) ⇢ p, and Γ,
as only fresh variables are changes in the valuation θ.
This concludes this case.

DG2⇢ From the rule’s left-hand-side, we obtain (j, v) = c
such that (θ(j), v) ⇢dg pθ. Due to the definition
of ⇢dg, (θ(j), v) is a K↓-conclusion and either (a)
(θ(j), v)↣ pθ or (b) there is a premise (k, u) such
that (θ(j), v)↣ (k, u) and (k,1)⇢dg pθ.
In Case (a), (dg, θ) is a model of the constraint system
{c↣ p} ∪ Γ in the right-hand-side of the rule.
In Case (b), there is ru ∈ NDdestr and a grounding
substitution σ such that ru σ = Ik. Moreover, u =
1 and v = 1 because of the structure of the rules
in NDdestr, We construct a model for the constraint
system

Γ′ = {i ∶ ru ρ, c↣ (i,1), (i,1)⇢ p, Γ}

where ρ is a renaming of ru fresh with respect to Γ.
The constraint system Γ′ occurs in the right-hand-side
of the constraint reduction rule. The structure

(dg, θ[i↦ k][ρ(x)↦ σ(x)]x∈dom(σ))

is a model of Γ′, as only fresh variables are changed
in the valuation θ, which concludes this case.

Soundness: The only non-trivial cases are the S�, S≐, DG21,
DG3, DG4, N5,6, and DG2⇢ rules, as all other rules only add
constraints to the constraint system on the left-hand-side.
S� Soundness follows trivially from the definition of ⊫

and the definition of ⊧AC for �.
DG2⇢ We distinguish the following two cases.

Case 1: assume there is a P -model (dg, θ) of

{c↣ p} ∪ Γ .

Hence, cθ ↣dg pθ. Moreover, cθ ⇢dg pθ. Thus (dg, θ)
is a model of c⇢ p, which concludes this case.
Case 2: assume there is a fresh i and ru ∈ NDdestr and
a fresh renaming bijection ρ for ru such that there is
a P -model ((I,D), θ) of

{i ∶ ru ρ, c↣ (i,1), (i,1)⇢ p} ∪ Γ .

Hence, θ(i) ∈ idx(I) and Iθ(i) =AC (ru ρ)θ. More-
over, cθ ↣ (θ(i),1) ∈ D and (θ(i),1) ⇢dg pθ for
dg = (I,D). As (ru ρ)θ ∈AC ginsts(NDdestr), it also
holds that cθ ⇢dg pθ. Thus (dg, θ) is a model of
c⇢ p, which concludes this case.

Soundness for the rules S≐, S¬,⋖, DG21, DG3, DG4, and N5,6
follows from the following argument. Assume that (dg, θ) is

38



a P -model of Γ{i/j}. Then, (dg, θ[j ↦ θ(i)]) is a P -model
of Γ, which concludes this case.

This concludes the proof that the ↝P -relation is sound
and complete.

In the following, we prove that, if our algorithm terminates
with a solved constraint system, then we can extract an attack
on P ⊧EDH

ϕ. Intuitively, the extraction uses two steps. We
first instantiate variables in Vpub with distinct public constants,
variables in Vmsg ∪ Vfresh with distinct fresh constants, and
temporal variables with their index according to a topological
sorting of ⋖Γ. Then, we extend the ↠-constraints and solve
the remaining open premises.

The formal proof requires two auxiliary lemmas and
proceeds as follows. We first state six conditions that are
required for a successful solution extraction and show that
these conditions are invariants of our constraint-reduction
relation ↝P . Then, we show how to extract a P -solution
from a solved constraint system satisfying these conditions.
Finally, we prove the desired theorem that we can extract a
P -solution from every solved constraint system Γ returned
by our constraint-solving algorithm.

Lemma 24. The conjunction of the following properties is
invariant under the constraint reduction relation ↝P .

CS1 Every node is labeled with an instance of a rule in
⌈P ⌉DH ∪ (ND ∖NDc-impl) ∪ {FRESH}.

CS2 For every edge c ↣ p ∈ Γ and every chain c ⇢ p ∈ Γ,
c ∈ dom(cs(Γ)) and p ∈ dom(ps(Γ)).

CS3 There is no K↑e(t) conclusion where t is unifiable with
a pair, an inversion, or a product.

CS4 Every conclusion c with a K↓e(t) fact has an outgoing
edge or an outgoing chain.

CS5 If there is a K↓e(t) conclusion and t is a product, then
the constraint system is not solved.

CS6 All trace formulas φ ∈ Γ are guarded trace formulas.

Proof: We justify each property individually.

CS1 All reduction rules adding i ∶ ri constraints ensure that
ri is an instance of a rule in ⌈P ⌉DH ∪(ND∖NDc-impl)∪
{FRESH}. Moreover, this property is invariant under
instantiation, which concludes this case.

CS2 All reduction rules adding c↣ p or c⇢ p constraints
ensure this property. Moreover, this property is invariant
under instantiation, which concludes this case.

CS3 The only reduction rules adding rule instances with
K↑e(t) conclusions are DG22,↑e and DG22,↑i. Their side
conditions ensures that t is not unifiable with pairs,
inversions, and products. Moreover, this property is
invariant under instantiation, which concludes this case

CS4 The only rules adding K↓-conclusion are DG22,↓ and
DG2⇢ . Both of them ensure this property. Moreover,
this property is invariant under instantiation, which
concludes this case.

CS5 Due to CS4, every K↓e(t) conclusion has either (1) an
outgoing edge to some premise with fact f or (2) an
outgoing destruction chain.
In case (1), we can either apply the reduction rule DG12

or f =AC K↓e(t). In the second case, t cannot be a
product, as all nodes are labeled with instances of rules
in ⌈P ⌉DH ∪ (ND ∖NDc-impl) ∪ {FRESH} due to CS1.
In case (2), we have t ∉ Vmsg and we can therefore apply
rule DG2⇢ , which implies that the constraint system is
not solved.

CS6 If all trace formulas are guarded, then all rules in ↝P
only add guarded trace formulas.

Lemma 25. We can construct a P -model for every solved
constraint system Γ satisfying CS1-6.

Proof: We construct a P -model of Γ using the following
two steps. First, we construct almost a dependency graph dg
that satisfies all properties of a normal dependency graph
for P except DG2. We also construct a valuation θ such that
the structure (dg, θ) satisfies all constraints in Γ except the
↠-constraints. Then, we extend dg such that DG2 and the
↠-constraints are also satisfied. We construct this extension
such that the properties and constraints already satisfied by
dg are also satisfied by its extension.

For the first step, we choose some sequence j⃗ =
[j1, . . . , jn] of all temporal variables in Γ ordered according
to a topological-sorting of ⋖Γ. Such a sequence exists because
rule DG11 is not applicable. Let [i1, . . . , il] for l ≤ n be the
subsequence of j⃗ that consists of all temporal variables ik
with an associated node constraint ik ∶ ri k in Γ. Note that the
rule instances ri k are unique modulo AC , as rule Ulbl is not
applicable. We choose θ to be an injective valuation such that
θ maps variables in Vmsg to FN1, the range of θ is disjoint
from St(Γ), θ(ik) = k for 1 ≤ k ≤ l, and θ(jk) < θ(jk+1)
for 1 ≤ k < n. Such a θ exists because there are infinitely
many public and fresh names and Q is dense. We define

dg = (D,I) = ([ri 1θ, . . . , ri nθ],{(cθ, pθ) ∣ c↣ p ∈ Γ}) .

This construction makes (dg, θ) almost a P -model for Γ, as
it satisfies the following properties.

It holds that D ⊆ (N×N)×(N×N) and I ∈ (ginsts(⌈P ⌉DH∪
ND ∪ {FRESH}))∗. The first proposition holds because CS2
ensures that every edge uses only temporal variables that are
labeled with a rule instance. For the second proposition, we
must show that every ri ∈ I is a ground instance of a rule
in ri ∈ ⌈P ⌉DH ∪ ND ∪ {FRESH}. By construction, there is
(i ∶ ri ′) ∈ Γ such that ri = ri ′θ. Due to CS1, ri ′, and hence
ri , is an instance of ⌈P ⌉DH ∪ND ∪ {FRESH}. As the range
of θ is ground, we have that ri = ri ′θ is ground.

1This means that we instantiate message variables with intruder-generated
fresh names.
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Moreover, dg satisfies all properties of a normal depen-
dency graph except DG2.
DG1 holds. Let (i, u) ↣ (j, v) ∈ D. By construction, i < j

holds. Moreover due to our construction and CS2, there
are facts f and f ′ such that ((i, u), f) ∈ concs(dg)
and ((j, v), f ′) ∈ prems(dg). It holds that f =AC f ′,
as rules DG12 and S≈ are not applicable.

DG3 holds, as rule DG3 is not applicable.
DG4 holds, as rule DG4 is not applicable.
N1 We must show that every ri ∈ I is ↓DH -normal. By

construction, there is (i ∶ ri ′) ∈ Γ such that ri = ri ′θ.
Due to rule N1 not being applicable, ri ′ is ↓DH -normal.
Hence, ri ′θ is ↓DH -normal, as all terms in the range
of θ are names.

N2 holds because of the structure of COERCE and CS3.
N3 holds because of CS1, i.e., because there is no instance

of the multiplication rule in dg.
N4 holds because of CS3,5, i.e., because there are no

conclusion facts deriving a product.
N5 holds because rule N5,6 is not applicable.
N6 holds because rules N5,6 and N6 are not applicable.
N7 holds because θ maps all message variables to fresh

names and the rule N7 is not applicable.
It holds that (dg, θ) is a model of all graph constraints in

Γ except the c↠dg p constraints.
● (dg, θ) ⊫ i ∶ ri holds for every i ∶ ri ∈ Γ by

construction.
● (dg, θ) ⊫ c ↣ p holds for every c ↣ p ∈ Γ by

construction.
● (dg, θ)⊫ c⇢ p holds for every c⇢ p ∈ Γ because there

is no chain constraint remaining in a solved constraint
system. This holds, as the properties of protocol rules
guarantee that for every message variable x in the
conclusion of a rule there is also an earlier K↑-premise
requiring the message variable x. Hence, if a chain
constraint remained, then the rule N6 were applicable.

It holds that M = (trace(dg), θ) is a model of all trace
formulas in Γ. Using CS5, we prove this by induction over
the size of the guarded trace formulas in Γ.

● M ⊧AC t1 ≈ t2. As S≈ is not applicable, t1 =AC t2.
Thus, t1θ =AC t2θ, which concludes this case.

● M ⊧AC i ≐ j. As S≐ is not applicable, i = j. Thus,
θ(i) =AC θ(j), which concludes this case.

● M ⊧AC i ⋖ j holds by construction.
● M ⊧AC f@i. As S@ is not applicable, f@i ∈AC as(Γ).

Hence, there is i ∶ l−−[ a ]→r ∈ Γ such that f ∈ set(a). By
construction, θ(i) ∈ idx(trace(dg)) and trace(dg)θ(i) =
set(aθ). Thus, fθ ∈AC trace(dg)θ(i), which concludes
this case.

● M ⊧AC ¬(t1 ≈ t2). There is no such constraint in Γ,
as otherwise rule S¬,≈ would be applicable.

● M ⊧AC ¬(i ≐ j). There is no such constraint in Γ, as
otherwise rule S¬,≐ would be applicable.

● M ⊧AC ¬(i ⋖ j). As S¬,⋖ is not applicable, we have
j ⋖Γ i or j = i. In both cases, M ⊧AC ¬(i ⋖ j) holds
by construction.

● M ⊧AC ¬(f@i). There is no such constraint in Γ, as
otherwise rule S¬,@ would be applicable.

● M ⊧AC φ1 ∧ φ2. Rule S∧ is not applicable. Hence
φ1, φ2 ∈ Γ. As φ1 and φ2 are smaller than φ1 ∧ φ2, the
induction hypothesis applies.

● M ⊧AC φ1∨φ2. Rule S∨ is not applicable. Hence φ1 ∈ Γ
or φ2 ∈ Γ. As φ1 and φ2 are smaller than φ1 ∨ φ2, the
induction hypothesis applies in either case.

● M ⊧AC ∃x∶s. φ. Rule S∃ is not applicable. Hence there
exists a w∶s such that φ{w/x} ∈ Γ. Hence, we have
M ⊧AC φ{w/x} from the induction hypothesis. Thus,
(trace(dg), θ[x ↦ wθ]) ⊧AC φ, which concludes this
case.

● M ⊧AC ∀x⃗. ¬(f@i) ∨ ψ. It suffices to show that,
for every valuation θ′ with θ′(x) = θ(x) for all
x ∉ x⃗, it holds that (trace(dg), θ′) ⊧AC f@i implies
(trace(dg), θ′) ⊧AC ψ.
Let θ′ be such a valuation. We will construct a sub-
stitution α from θ′ such that dom(α) = set(x⃗) and
(f@i)α ∈ as(Γ). Hence, M ⊧AC ψα because the
reduction rule S∀ is not applicable. We will show that
our construction of α ensures that M ⊧AC ψα implies
(trace(dg), θ′) ⊧AC ψ. This will conclude this case.
We require an auxiliary definition and two auxiliary
claims to prove this case. We define θ̂ ∶ T → T as
follows.

θ̂(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ−1(t) if t ∈ ran(θ)
t if t ∈ (PN ∪ FN ∪ V) ∖ ran(θ)
f(θ̂(t1), . . . , θ̂(tk)) if t = f(t1, . . . , tk) for f ∈ Σk

Intuitively, θ̂ lifts θ−1 to terms and temporal variables.2

Claim 1. For all t, s ∈ T with t ground and St(s) ∩
ran(θ) = ∅, it holds that t =AC sθ implies θ̂(t) =AC s.

Proof: By induction over t.
– Case t ∈ PN ∪ FN. Case distinction on s.
∗ s ∈ PN∪FN. From t =AC sθ, we have t = s. Note

that s ∉ ran(θ) by assumption. Thus, θ̂(s) =AC

s.
∗ s ∈ V . From t =AC θ(s), we have t ∈ ran(θ).

Thus, θ̂(t) = θ−1(t) = s because θ is injective.
– t = f(t1, . . . , tk) for f ∈ Σk and ti ∈ T . Trivial due

to ran(θ) ⊆ PN∪FN, the distributivity of =AC and
St over f , and our induction hypothesis.

We define α = {θ̂(θ′(x))/x}x∈x⃗. Note that α is a (well-
sorted) substitution due to the definition of valuations

2Here, we assume that terms can also be built from temporal variables.
This saves us duplicated proof work.
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and the definition of guarded trace formulas that ensures
that x⃗ ⊆ (Vmsg ∪ Vtemp)∗.
Claim 2. For all t, s ∈ T with (St(t)∪St(s))∩ran(θ) =
∅, it holds that tθ′ =AC sθ implies tα =AC s.

Proof: By induction over t.
– Case t ∈ PN ∪ FN. We must show that t =AC sθ

implies t =AC s. Case distinction on s.
∗ s ∈ PN ∪ FN. Trivial.
∗ s ∈ V . We have t = θ(s). Hence, t ∈ ran(θ),

which contradicts our assumptions.
– Case t ∈ V . We must show that θ′(t) =AC sθ

implies α(t) =AC s. We make a case distinction.
∗ t ∈ x⃗: We have θ′(t) ground and St(s) ∩

ran(θ) = ∅. Moreover, θ′(t) =AC sθ. Hence,
θ̂(θ′(t)) =AC s holds due to Claim 1. Thus,
α(t) =AC s, which concludes this case.

∗ t ∉ x⃗: We have θ(t) =AC sθ due to the
assumptions on θ′. We must show t =AC s. We
make a case distinction on s.
⋅ s ∈ PN ∪ FN. We have θ(t) =AC s. Hence,
s ∈ ran(θ), which contradicts our assumptions.

⋅ s ∈ V . We have θ(t) =AC θ(s). Due to the
injectivity of θ, we have t = s, which concludes
this case.

– t = f(t1, . . . , tk) for f ∈ Σk and ti ∈ T . Trivial due
to ran(θ) ⊆ PN∪FN, the distributivity of =AC and
St over f , and our induction hypothesis.

Note that (trace(dg), θ′) ⊧AC f@i. Due to the construc-
tion of dg, we hence obtain j ∶ l−−[ a ]→r ∈ Γ and f ′ ∈ a
such that (i, f)θ′ =AC (j, f ′)θ. Note that all subterms of
f and f ′ are subterms of Γ. Moreover, ran(θ) ⊆ (PN ∪
FN)∖St(Γ), which implies that (St(i, f)∪St(j, f ′))∩
ran(θ) = ∅. We thus have (i, f)α =AC (j, f ′) due
to Claim 2. Note that f ′@j ∈ as(Γ) and hence
(f@i)α ∈AC as(Γ). Thus, (trace(dg), θ) ⊧AC ψα,
as the reduction rule S¬,@ is not applicable. Hence,
(trace(dg), θ[x ↦ (α(x))θ]x∈x⃗) ⊧AC ψ. Note that
(α(x))θ = (θ̂(θ′(x)))θ = θ′(x) due to the definition
of θ̂. Thus, (trace(dg), θ′) ⊧AC ψ, which concludes
this case.

Note that the only violations of DG2 stem from K↑-
premises that require either a pair, an inversion, a product, a
trivial message, or an intruder generated fresh name in ran(θ).
We can remove these violations by extending (dg, θ) with
the missing instances of the corresponding normal message
deduction rules and the missing edges between them and other
rule instances. This is possible, as the only open premises
are open message premises requiring a trivial message or an
intruder-generated fresh name. Moreover, the semantics of
c↠ p constraints ensures that there is at least one implicit
construction rule in between the conclusion c and the premise

p. Therefore, there cannot be a violation of the exponentiation
tags when introducing edges for the implicit constructions.
We construct this extension by exploiting Lemma 19 to
insert further rule instances into I without violating the
trace formulas in Γ. We perform this extension such that the
uniqueness of K-conclusions is not violated. Thus, we can
construct a P -model for every solved constraint system Γ
satisfying CS1-6.

Theorem (Justification of Theorem 3 on page 13). We can
construct a P -solution from every solved system in the state
Ω of our constraint-solving algorithm.

Proof: The properties CS1-6 are satisfied for the starting
state used by our algorithm. They are maintained by our
algorithm due to Lemma 24. Hence, we can construct a P -
solution for the solved constraint system Γ using Lemma 25.
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